Original entry on oeis.org
0, 9019111283849586673849, 2800635151223213306427252786258724782569, 38820658516357257553433744313540726385473788837869, 486260695571681062661593654624568685547616490677490278486699, 5922140769220175613527413333735098472840156837516629604758465185870499, 69603300845463418320790282235683818480848178512581026926779472977171003869722989
Offset: 0
a(0) = A177359(1) = 0;
a(1) = A177359(10) = 9019111283849586673849;
a(2) = A177359(100) = 2800635151223213306427252786258724782569; etc.
A177360
a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=1.
Original entry on oeis.org
1, 11, 31, 4113, 612314, 8112332416, 1113253342618, 151528344153628, 1817210364454648, 102118211310455661768, 3028110212311475962788, 50331142143124851064711819, 704111621731641051165713829, 905011821931841251468714839, 1105712022132141451569718869
Offset: 1
One; one one; three ones; four ones, one three; six ones, two threes, one four; eight ones, one two, three threes, two fours, one six; eleven ones, three twos, five threes, three fours, two sixes, one eight; etc.
-
lst = {Join[{e, 1}, Array[e &, 8]]}; Do[With[{k = Last@lst}, AppendTo[lst, ((k /. e -> 0) + With[{l = StringJoin @@ ToString /@ k}, Table[If[k[[i + 1]] =!= e, 1, 0] + StringCount[l, ToString[i]], {i, 0, 9}]]) /. {0 -> e}]], {1000}] lst = Prepend[ StringJoin @@ MapIndexed[ If[ # =!= e, ToString@# <> ToString[ #2[[1]] - 1], ""] &, # ] & /@ lst, "1"]; (* Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010 *)
-
def aupton(nn):
alst, last_str = [1], "1"
dig_counts = [0 for i in range(10)]
for n in range(2, nn+1):
nxt = []
for d in "0123456789":
if d in last_str: dig_counts[int(d)] += last_str.count(d)
if dig_counts[int(d)] > 0: nxt += [dig_counts[int(d)], int(d)]
nxt_str = "".join(map(str, nxt))
alst.append(int(nxt_str)); last_str = nxt_str
return alst
print(aupton(15)) # Michael S. Branicky, Jan 11 2021
A177368
Count the digits of the previous terms and describe nonzero counts, digits in ascending order, concatenating the count and the digit. Initial term is 9.
Original entry on oeis.org
9, 19, 1129, 311239, 51222349, 615233141559, 91625324451669, 111826344654689, 14192737475762899, 161112839485864738129, 211132103114951065778149, 202911521231341151167788169, 3038119214314413513697108189, 50461202193174145146107138219, 80541232213214165166127148239
Offset: 1
Nine; one nine; 1129=one one, two nines; 311239=three ones, one two, three nines; 51222349=five ones, two twos, two threes, four nines; six ones, five twos, three threes, one four, one five, five nines; etc.
A177363
a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=4.
Original entry on oeis.org
4, 14, 1124, 311234, 51222344, 6152336415, 816253743526, 9182738455461718, 12192831047556374819, 101611121031249566576839, 30231132123134115106677859, 50301162173144135126878869
Offset: 1
Four; one four; one one, two fours; three ones, one two, three fours; five ones, two twos, two threes, four fours; six ones, five twos, three threes, six fours, one five; etc.
A177365
a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=6.
Original entry on oeis.org
6, 16, 1126, 311236, 51222346, 615233141556, 916253244576, 10182634465961719, 1014192736475126271839, 20191122938485146572859, 30231162103104115156675889, 60301182133114145186777899, 80371192163134155206107108119, 120461212193144175226127128139
Offset: 1
Six; one six; one one, two sixes; three ones, one two, three sixes; five ones, two twos, two threes, four sixes; six ones, five twos, three threes, one four, one five, five sixes; etc.
A177367
a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=8.
Original entry on oeis.org
8, 18, 1128, 311238, 51222348, 615233141558, 91625324451668, 11182634465467819, 1519273747576179829, 181112838495866710859, 1023112293941151067715879, 30301152113104135116107168109, 80411162153114155136117178119, 90541172173134185156137198129, 100631192203154215166167218159
Offset: 1
Eight; one eight; one one, two eights; three ones, one two, three eights; five ones, two twos, two threes, four eights; six ones, five twos, three threes, one four, one five, five eights; etc.
A037220
Summarize the previous term!.
Original entry on oeis.org
0, 10, 1011, 1031, 102113, 10311213, 10411223, 1031221314, 1041222314, 1031321324, 1031223314, 1031223314, 1031223314, 1031223314, 1031223314, 1031223314, 1031223314, 1031223314, 1031223314, 1031223314, 1031223314
Offset: 0
a(0) is given as 0;
a(1) is one zero -> 10;
a(2) is one zero and one one -> 1011;
a(3) is one zero and three ones -> 1031;
a(7) and onward is 1031223314.
A177361
a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=2.
Original entry on oeis.org
2, 12, 1122, 3142, 41521314, 7162233415, 91824344251617, 12110253743526271819, 1017114273845536472829, 20211172931147546774839, 3026120211314485561175859, 50321232133164125761277869, 603712821731741451061578879, 8043130219319416512620711889
Offset: 1
Two; one two; one one, two twos; three ones, four twos; four ones, five twos, one three, one four; seven ones, six twos, two threes, three fours, one five; etc.
A177362
a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=3.
Original entry on oeis.org
3, 13, 1123, 311233, 512263, 6142731516, 91528314253617, 12172103244546271819, 10171112113545556472829, 20241142123749566673839, 3027118215310410596874859, 603212021731241351061077879
Offset: 1
Three; one three; one one, two threes; three ones, one two, three threes; five ones, two twos, six threes; six ones, four twos, seven threes, one five, one six; etc.
A177364
a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=5.
Original entry on oeis.org
5, 15, 1125, 311235, 51222345, 6152331465, 816253248526, 919263341054628, 101111128354115663829, 2019113210364135865839, 40241152143741551067859, 60291172153114195116278869, 703712021631242151464710899, 10043124218315422516677118119, 12052128220318424518697138129
Offset: 1
Five; one five; one one, two fives; three ones, one two, three fives; five ones, two twos, two threes, four fives; six ones, five twos, three threes, one four, six fives; etc.
Showing 1-10 of 12 results.
Comments