cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A177359 a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=0.

Original entry on oeis.org

0, 10, 2011, 303112, 40512223, 506152331415, 60916253244516, 70111826344654619, 801519273747576171829, 9019111283849586673849, 100231122103104105106777889, 1603011521231141151161079899, 190411172143124135136117108129, 210531202173154145146137118149, 230631232203194175156157128159
Offset: 1

Views

Author

Paolo P. Lava, May 10 2010

Keywords

Comments

Zero; one zero; two zeros, one one; three zeros, three ones, one two; four zeros, five ones, two twos, two threes; five zeros, six ones, five twos, three threes, one four, one five; etc.
Also look left and say. - Robert G. Wilson v, Nov 18 2019

Crossrefs

Programs

  • Mathematica
    Nest[Append[#, FromDigits@ Flatten@ Map[IntegerDigits@ Reverse@ # &, Sort@ Tally@ Flatten@ IntegerDigits@ #]] &, {0}, 11] (* Michael De Vlieger, Nov 21 2019 *)

Extensions

More terms from Robert G. Wilson v, Nov 18 2019

A177360 a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=1.

Original entry on oeis.org

1, 11, 31, 4113, 612314, 8112332416, 1113253342618, 151528344153628, 1817210364454648, 102118211310455661768, 3028110212311475962788, 50331142143124851064711819, 704111621731641051165713829, 905011821931841251468714839, 1105712022132141451569718869
Offset: 1

Views

Author

Keywords

Examples

			One; one one; three ones; four ones, one three; six ones, two threes, one four; eight ones, one two, three threes, two fours, one six; eleven ones, three twos, five threes, three fours, two sixes, one eight; etc.
		

Crossrefs

Programs

  • Mathematica
    lst = {Join[{e, 1}, Array[e &, 8]]}; Do[With[{k = Last@lst}, AppendTo[lst, ((k /. e -> 0) + With[{l = StringJoin @@ ToString /@ k}, Table[If[k[[i + 1]] =!= e, 1, 0] + StringCount[l, ToString[i]], {i, 0, 9}]]) /. {0 -> e}]], {1000}] lst = Prepend[ StringJoin @@ MapIndexed[ If[ # =!= e, ToString@# <> ToString[ #2[[1]] - 1], ""] &, # ] & /@ lst, "1"]; (* Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010 *)
  • Python
    def aupton(nn):
      alst, last_str = [1], "1"
      dig_counts = [0 for i in range(10)]
      for n in range(2, nn+1):
        nxt = []
        for d in "0123456789":
          if d in last_str: dig_counts[int(d)] += last_str.count(d)
          if dig_counts[int(d)] > 0: nxt += [dig_counts[int(d)], int(d)]
        nxt_str = "".join(map(str, nxt))
        alst.append(int(nxt_str)); last_str = nxt_str
      return alst
    print(aupton(15)) # Michael S. Branicky, Jan 11 2021

Extensions

Terms corrected using values in b-file. - N. J. A. Sloane, Oct 05 2010

A177363 a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=4.

Original entry on oeis.org

4, 14, 1124, 311234, 51222344, 6152336415, 816253743526, 9182738455461718, 12192831047556374819, 101611121031249566576839, 30231132123134115106677859, 50301162173144135126878869
Offset: 1

Views

Author

Keywords

Comments

For a Mathematica program, see A177360 (you have to slightly modify it) [From Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010]

Examples

			Four; one four; one one, two fours; three ones, one two, three fours; five ones, two twos, two threes, four fours; six ones, five twos, three threes, six fours, one five; etc.
		

Crossrefs

A177365 a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=6.

Original entry on oeis.org

6, 16, 1126, 311236, 51222346, 615233141556, 916253244576, 10182634465961719, 1014192736475126271839, 20191122938485146572859, 30231162103104115156675889, 60301182133114145186777899, 80371192163134155206107108119, 120461212193144175226127128139
Offset: 1

Views

Author

Keywords

Comments

For a Mathematica program, see A177360 (you have to slightly modify it) [From Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010]

Examples

			Six; one six; one one, two sixes; three ones, one two, three sixes; five ones, two twos, two threes, four sixes; six ones, five twos, three threes, one four, one five, five sixes; etc.
		

Crossrefs

Extensions

Terms corrected using values in b-file. - N. J. A. Sloane, Oct 05 2010

A177367 a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=8.

Original entry on oeis.org

8, 18, 1128, 311238, 51222348, 615233141558, 91625324451668, 11182634465467819, 1519273747576179829, 181112838495866710859, 1023112293941151067715879, 30301152113104135116107168109, 80411162153114155136117178119, 90541172173134185156137198129, 100631192203154215166167218159
Offset: 1

Views

Author

Keywords

Comments

For a Mathematica program, see A177360 (you have to slightly modify it) [From Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010]

Examples

			Eight; one eight; one one, two eights; three ones, one two, three eights; five ones, two twos, two threes, four eights; six ones, five twos, three threes, one four, one five, five eights; etc.
		

Crossrefs

Extensions

Terms corrected using values in b-file. - N. J. A. Sloane, Oct 05 2010

A177361 a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=2.

Original entry on oeis.org

2, 12, 1122, 3142, 41521314, 7162233415, 91824344251617, 12110253743526271819, 1017114273845536472829, 20211172931147546774839, 3026120211314485561175859, 50321232133164125761277869, 603712821731741451061578879, 8043130219319416512620711889
Offset: 1

Views

Author

Keywords

Comments

For a Mathematica program, see A177360 (you have to slightly modify it) [From Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010]

Examples

			Two; one two; one one, two twos; three ones, four twos; four ones, five twos, one three, one four; seven ones, six twos, two threes, three fours, one five; etc.
		

Crossrefs

Extensions

Terms corrected using values in b-file. - N. J. A. Sloane, Oct 05 2010

A177362 a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=3.

Original entry on oeis.org

3, 13, 1123, 311233, 512263, 6142731516, 91528314253617, 12172103244546271819, 10171112113545556472829, 20241142123749566673839, 3027118215310410596874859, 603212021731241351061077879
Offset: 1

Views

Author

Keywords

Comments

For a Mathematica program, see A177360 (you have to slightly modify it) [From Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010]

Examples

			Three; one three; one one, two threes; three ones, one two, three threes; five ones, two twos, six threes; six ones, four twos, seven threes, one five, one six; etc.
		

Crossrefs

A177364 a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=5.

Original entry on oeis.org

5, 15, 1125, 311235, 51222345, 6152331465, 816253248526, 919263341054628, 101111128354115663829, 2019113210364135865839, 40241152143741551067859, 60291172153114195116278869, 703712021631242151464710899, 10043124218315422516677118119, 12052128220318424518697138129
Offset: 1

Views

Author

Keywords

Comments

For a Mathematica program, see A177360 (you have to slightly modify it) [From Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010]

Examples

			Five; one five; one one, two fives; three ones, one two, three fives; five ones, two twos, two threes, four fives; six ones, five twos, three threes, one four, six fives; etc.
		

Crossrefs

Extensions

Terms corrected using values in b-file. - N. J. A. Sloane, Oct 05 2010

A177366 a(n) contains the nonzero frequencies f(d) of digits d=0 .. 9 in all terms up to a(n-1) in concatenated form sorted with respect to d: f(0)//0//f(1)//1//...//f(9)//9. Initial term a(1)=7.

Original entry on oeis.org

7, 17, 1127, 311237, 51222347, 615233141557, 91625324451667, 11182634465467719, 1519273747576971829, 181112838495861472859, 23113293104115961577879, 1029115212311413510618788109, 40391182143124155116197118129, 50501212163154175126207138159, 80581252183164225146227148169
Offset: 1

Views

Author

Keywords

Comments

For a Mathematica program, see A177360 (you have to slightly modify it) [From Jasper Mulder (jasper.mulder(AT)planet.nl), Jun 04 2010]

Examples

			Seven; one seven; one one, two sevens; three ones, one twos, three sevens; five ones, two twos, thwo threes, four sevens; six ones, five twos, three threes, one four, one five, five sevens; etc.
		

Crossrefs

Extensions

Terms corrected using values in b-file. - N. J. A. Sloane, Oct 05 2010
Showing 1-9 of 9 results.