cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A295758 O.g.f.: Sum_{n>=0} Product_{k=1..n} tan( (2*k-1)*arctan(x) ).

Original entry on oeis.org

1, 1, 3, 15, 113, 1105, 13219, 187103, 3058113, 56675297, 1174295267, 26898243439, 674916701169, 18409502066097, 542373965958595, 17164148092886207, 580677914417571585, 20913258579319759041, 798876414332323236931, 32261582928825038942671, 1373304514339211081661169
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2018

Keywords

Examples

			O.g.f: A(x) = 1 + x + 3*x^2 + 15*x^3 + 113*x^4 + 1105*x^5 + 13219*x^6 + 187103*x^7 + 3058113*x^8 + 56675297*x^9 + 1174295267*x^10 + ...
such that
A(x) = 1 + x + x*tan(3*arctan(x)) + x*tan(3*arctan(x))*tan(5*arctan(x)) + x*tan(3*arctan(x))*tan(5*arctan(x))*tan(7*arctan(x)) + x*tan(3*arctan(x))*tan(5*arctan(x))*tan(7*arctan(x))*tan(9*arctan(x)) + ...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n), Gf); Gf=sum(m=0, n, prod(k=1, m, tan((2*k-1)*atan(X)))); polcoeff(Gf, n)}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) ~ 2^n * n^n / (exp(n) * G^(n + 1/2)), where G is the Catalan constant A006752. - Vaclav Kotesovec, Oct 02 2020

A295759 O.g.f.: Sum_{n>=0} Product_{k=1..n} tan( (2*k)*arctan(x) ).

Original entry on oeis.org

1, 2, 8, 50, 432, 4690, 61208, 933090, 16268640, 319249698, 6963071784, 167093039122, 4374954323216, 124108887889522, 3791902447022648, 124138462767883202, 4335205955612166848, 160865445090615444546, 6320573384125953811016, 262147404448177963790834, 11445191965935999115186288
Offset: 0

Views

Author

Paul D. Hanna, Jan 28 2018

Keywords

Examples

			O.g.f: A(x) = 1 + 2*x + 8*x^2 + 50*x^3 + 432*x^4 + 4690*x^5 + 61208*x^6 + 933090*x^7 + 16268640*x^8 + 319249698*x^9 + 6963071784*x^10 + + ...
such that
A(x) = 1 + tan(2*arctan(x)) + tan(2*arctan(x))*tan(4*arctan(x)) + tan(2*arctan(x))*tan(4*arctan(x))*tan(6*arctan(x)) + tan(2*arctan(x))*tan(4*arctan(x))*tan(6*arctan(x))*tan(8*arctan(x)) + tan(2*arctan(x))*tan(4*arctan(x))*tan(6*arctan(x))*tan(8*arctan(x))*tan(10*arctan(x)) + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 20;
    Sum[Product[Tan[2 k ArcTan[x]], {k, 1, n}] , {n, 0, nmax}] + O[x]^(nmax+1) // CoefficientList[#, x]& (* Jean-François Alcover, Oct 02 2020 *)
  • PARI
    {a(n)=local(X=x+x*O(x^n), Gf); Gf=sum(m=0, n, prod(k=1, m, tan((2*k)*atan(X)))); polcoeff(Gf, n)}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) ~ 2^(n - 1/2) * n! / G^(n+1), where G is the Catalan constant A006752. - Vaclav Kotesovec, Oct 02 2020
Showing 1-2 of 2 results.