cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177381 G.f.: Sum_{n>=0} Product_{k=1..n} tan(k*arctan(x)).

Original entry on oeis.org

1, 1, 2, 6, 26, 142, 930, 7110, 62138, 610958, 6674370, 80201222, 1051277530, 14927729678, 228262465634, 3739557703366, 65345926588026, 1213197344607502, 23848186328994178, 494822251631023622, 10807111342480752538
Offset: 0

Views

Author

Paul D. Hanna, May 12 2010

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 26*x^4 + 142*x^5 + 930*x^6 +...
A(x) = 1 + x + x*tan(2*arctan(x)) + x*tan(2*arctan(x))*tan(3*arctan(x)) +...
where the series tan(k*arctan(x)) for k=2..6 begin:
tan(2*arctan(x)) = 2*x + 2*x^3 + 2*x^5 + 2*x^7 + 2*x^9 + ...
tan(3*arctan(x)) = 3*x + 8*x^3 + 24*x^5 + 72*x^7 + 216*x^9 + ...
tan(4*arctan(x)) = 4*x + 20*x^3 + 116*x^5 + 676*x^7 + 3940*x^9 + ...
tan(5*arctan(x)) = 5*x + 40*x^3 + 376*x^5 + 3560*x^7 + 33720*x^9 + ...
tan(6*arctan(x)) = 6*x + 70*x^3 + 966*x^5 + 13446*x^7 + 187270*x^9 + ...
...
tan(k*arctan(x)) = -i*((1+i*x)^k - (1-i*x)^k) / ((1+i*x)^k + (1-i*x)^k).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n),Gf);Gf=sum(m=0,n,prod(k=1,m,tan(k*atan(X))));polcoeff(Gf,n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0, n, (-I)^m*prod(k=1, m, ((1+I*x)^k-(1-I*x)^k)/((1+I*x)^k+(1-I*x)^k +x*O(x^n)))), n)}
    for(n=0,25,print1(a(n),","))

Formula

G.f.: A(x) = G(arctan(x)) where G(x) = e.g.f. of A177382.
G.f.: Sum_{n>=0} (-I)^n*Product_{k=1..n} ((1+i*x)^k - (1-i*x)^k)/((1+i*x)^k + (1-i*x)^k), where i = sqrt(-1).
a(n) ~ n! / (sqrt(2) * G^(n+1)), where G = A006752 = 0.915965594177219... is Catalan's constant. - Vaclav Kotesovec, Nov 06 2014

A335618 E.g.f.: Sum_{n>=0} Product_{k=1..n} tan(2*k*x).

Original entry on oeis.org

1, 2, 16, 304, 10496, 568832, 44486656, 4742354944, 660908343296, 116642430451712, 25425572550148096, 6708171660023824384, 2106760489114215120896, 776654121137653931835392, 332101031506139993274843136, 163037618505293422657351450624, 91075662529714266445615040823296
Offset: 0

Views

Author

Vaclav Kotesovec, Oct 02 2020

Keywords

Crossrefs

Programs

  • Mathematica
    nmax = 20; CoefficientList[Series[Sum[Product[Tan[2*k*x], {k, 1, n}], {n, 0, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!

Formula

a(n) ~ 2^(n - 1/2) * n!^2 / G^(n+1), where G is the Catalan constant A006752.
a(n) = 2^n * A177382(n).
Showing 1-2 of 2 results.