cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177385 E.g.f.: Sum_{n>=0} Product_{k=1..n} sinh(k*x).

Original entry on oeis.org

1, 1, 4, 37, 616, 16081, 605164, 31011457, 2076192976, 175951716481, 18411425885524, 2331339303739777, 351341718484191736, 62144180030978834881, 12748469150999320273084, 3002313213700366145858497
Offset: 0

Views

Author

Paul D. Hanna, May 15 2010

Keywords

Comments

Compare to the e.g.f. for A002105, the reduced tangent numbers:
. Sum_{n>=0} A002105(n+1)*x^n/n! = Sum_{n>=0} Product_{k=1..n} tanh(k*x).
Limit n->infinity n!*A177386(n) / (2^n*A177385(n)) = 1. - Vaclav Kotesovec, Nov 06 2014

Examples

			E.g.f: A(x) = 1 + x + 4*x^2/2! + 37*x^3/3! + 616*x^4/4! +...
A(x) = 1 + sinh(x) + sinh(x)*sinh(2x) + sinh(x)*sinh(2x)*sinh(3x) + ...
		

Crossrefs

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[Sum[Product[Sinh[k*x],{k,1,j}],{j,0,n}],{x,0,n}], {n,0,20}] (* Vaclav Kotesovec, Nov 01 2014 *)
    nn=20; tab = ConstantArray[0,nn]; tab[[1]] = Series[Sinh[x],{x,0,nn}]; Do[tab[[k]] = Series[tab[[k-1]]*Sinh[k*x],{x,0,nn}],{k,2,nn}]; Flatten[{1,Rest[CoefficientList[Sum[tab[[k]],{k,1,nn}],x] * Range[0,nn]!]}] (* Vaclav Kotesovec, Nov 04 2014 (more efficient) *)
  • PARI
    {a(n)=local(X=x+x*O(x^n),Egf);Egf=sum(m=0,n,prod(k=1,m,sinh(k*X)));n!*polcoeff(Egf,n)}

Formula

a(n) ~ c * d^n * (n!)^2, where d = A249748 = 1.04689919262595424111342518325311817976789046475647184115584744582777576864..., c = 0.880333778211172907563073031129920597506533414605109200048966773434616066... . - Vaclav Kotesovec, Nov 04 2014

A249748 Decimal expansion of a constant related to A177385.

Original entry on oeis.org

1, 0, 4, 6, 8, 9, 9, 1, 9, 2, 6, 2, 5, 9, 5, 4, 2, 4, 1, 1, 1, 3, 4, 2, 5, 1, 8, 3, 2, 5, 3, 1, 1, 8, 1, 7, 9, 7, 6, 7, 8, 9, 0, 4, 6, 4, 7, 5, 6, 4, 7, 1, 8, 4, 1, 1, 5, 5, 8, 4, 7, 4, 4, 5, 8, 2, 7, 7, 7, 5, 7, 6, 8, 6, 4, 3, 5, 1, 3, 5, 2, 4, 0, 2, 3, 7, 7, 1, 8, 5, 9, 3, 0, 7, 5, 3, 6, 8, 1, 5, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 04 2014

Keywords

Examples

			1.0468991926259542411134251832531181797678904647564718411558474458277757...
		

Crossrefs

Formula

Equals limit n->infinity (A177385(n)/(n!)^2)^(1/n).
Equals limit n->infinity (A177386(n)/n!)^(1/n) / 2. - Vaclav Kotesovec, Nov 06 2014
Showing 1-2 of 2 results.