cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A249748 Decimal expansion of a constant related to A177385.

Original entry on oeis.org

1, 0, 4, 6, 8, 9, 9, 1, 9, 2, 6, 2, 5, 9, 5, 4, 2, 4, 1, 1, 1, 3, 4, 2, 5, 1, 8, 3, 2, 5, 3, 1, 1, 8, 1, 7, 9, 7, 6, 7, 8, 9, 0, 4, 6, 4, 7, 5, 6, 4, 7, 1, 8, 4, 1, 1, 5, 5, 8, 4, 7, 4, 4, 5, 8, 2, 7, 7, 7, 5, 7, 6, 8, 6, 4, 3, 5, 1, 3, 5, 2, 4, 0, 2, 3, 7, 7, 1, 8, 5, 9, 3, 0, 7, 5, 3, 6, 8, 1, 5, 9
Offset: 1

Views

Author

Vaclav Kotesovec, Nov 04 2014

Keywords

Examples

			1.0468991926259542411134251832531181797678904647564718411558474458277757...
		

Crossrefs

Formula

Equals limit n->infinity (A177385(n)/(n!)^2)^(1/n).
Equals limit n->infinity (A177386(n)/n!)^(1/n) / 2. - Vaclav Kotesovec, Nov 06 2014

A193467 E.g.f.: Sum_{n>=0} x^n * exp(n*(n+1)/2*x).

Original entry on oeis.org

1, 1, 4, 27, 280, 4025, 75876, 1800253, 52193408, 1807302897, 73406128420, 3446236588421, 184750419871920, 11194423784630281, 759960096829452260, 57367378069894391325, 4783586470578255085696, 438054092182322814028001, 43827052650093379145736900
Offset: 0

Views

Author

Paul D. Hanna, Jul 27 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 4*x^2/2! + 27*x^3/3! + 280*x^4/4! + 4025*x^5/5! + 75876*x^6/6! + 1800253*x^7/7! +...
where
A(x) = 1 + x*exp(x) + x^2*exp(3*x) + x^3*exp(6*x) + x^4*exp(10*x) +...
By a q-series identity:
A(x) = 1 + x*exp(x)*(1-x*exp(x))/(1-x*exp(2*x)) + x^2*exp(2*x)*(1-x*exp(x))*(1-x*exp(3*x))/((1-x*exp(2*x))*(1-x*exp(4*x))) + x^3*exp(3*x)*(1-x*exp(x))*(1-x*exp(3*x))*(1-x*exp(5*x))/((1-x*exp(2*x))*(1-x*exp(4*x))*(1-x*exp(6*x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(Egf); Egf=sum(m=0, n, x^m*exp(m*(m+1)/2*x+x*O(x^n))); n!*polcoeff(Egf, n)}
    
  • PARI
    /* q-series identity: */
    {a(n)=local(A=1+x);for(i=1, n, A=sum(m=0, n, x^m*exp(m*x+x*O(x^n))*prod(k=1, m, (1-x*exp((2*k-1)*x+x*O(x^n)))/(1-x*exp((2*k)*x+x*O(x^n)))))); n!*polcoeff(A, n)}

Formula

E.g.f.: A(x) = Sum_{n>=0} x^n*exp(n*x)*Product_{k=1..n} (1 - x*exp((2*k-1)*x)) / (1 - x*exp(2*k*x)), due to a q-series identity.
Let q = exp(x), then the e.g.f. equals the continued fraction:
A(x) = 1/(1- q*x/(1- q*(q-1)*x/(1- q^3*x/(1- q^2*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^3-1)*x/(1- q^7*x/(1- q^4*(q^4-1)*x/(1- ...))))))))), due to a partial theta function identity.
O.g.f.: Sum_{k>=0} k! * x^k / (1 - binomial(k+1,2)*x)^(k+1). - Ilya Gutkovskiy, Jul 02 2019

A177387 E.g.f.: Sum_{n>=0} Product_{k=1..n} sin(k*x).

Original entry on oeis.org

1, 1, 4, 35, 536, 12721, 432364, 19923455, 1195597616, 90597432961, 8459910749524, 954441965659775, 127987398340965896, 20120987017230590401, 3665273670382984503484, 765857737574513717138495
Offset: 0

Views

Author

Paul D. Hanna, May 15 2010

Keywords

Examples

			E.g.f: A(x) = 1 + x + 4*x^2/2! + 35*x^3/3! + 536*x^4/4! +...
A(x) = 1 + sin(x) + sin(x)*sin(2x) + sin(x)*sin(2x)*sin(3x) + ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Rest[CoefficientList[Series[Sum[Product[Sin[m*x],{m,1,k}],{k,1,20}],{x,0,20}],x] * Range[0,20]!]}] (* Vaclav Kotesovec, Nov 03 2014 *)
    nn=20; tab=ConstantArray[0,nn]; tab[[1]]=Series[Sin[x],{x,0,nn}]; Do[tab[[k]]=Series[tab[[k-1]]*Sin[k*x],{x,0,nn}],{k,2,nn}]; Flatten[{1,Rest[CoefficientList[Sum[tab[[k]],{k,1,nn}],x]*Range[0,nn]!]}] (* Vaclav Kotesovec, Nov 03 2014 (more efficient) *)
  • PARI
    {a(n)=local(X=x+x*O(x^n),Egf);Egf=sum(m=0,n,prod(k=1,m,sin(k*X)));n!*polcoeff(Egf,n)}

Formula

a(n) ~ c * 2^(n+1) * n^(2*n+7/6) / (Pi^(n-1) * exp(2*n) * (log(2))^n), where c = 1.01529686... . - Vaclav Kotesovec, Nov 03 2014

A177386 O.g.f.: Sum_{n>=0} Product_{k=1..n} sinh(k*arcsinh(2x)).

Original entry on oeis.org

1, 2, 8, 48, 400, 4192, 52720, 773536, 12970016, 244625088, 5125896112, 118137655840, 2970016739552, 80883641686848, 2372035401856352, 74528583049288768, 2497667361588205632, 88932255196677684608
Offset: 0

Views

Author

Paul D. Hanna, May 15 2010

Keywords

Comments

Lim_{n->infinity} n!*A177386(n) / (2^n*A177385(n)) = 1. - Vaclav Kotesovec, Nov 06 2014

Examples

			O.g.f.: A(x) = 1 + 2*x + 8*x^2 + 48*x^3 + 400*x^4 + 4192*x^5 + ...
Let G(x) be the e.g.f. of A177385:
G(x) = 1 + x + 4*x^2/2! + 37*x^3/3! + 616*x^4/4! + 16081*x^5/5! + ...
then A(x) = G(arcsinh(2x)).
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n),Egf);Egf=sum(m=0,n,prod(k=1,m,sinh(k*asinh(2*X))));polcoeff(Egf,n)}

Formula

O.g.f.: A(x) = G(arcsinh(2x)) where G(x) = e.g.f. of A177385.
a(n) ~ c * d^n * n!, where d = 2*A249748 = 2.0937983852519084822268503..., c = 0.880333778211172907563073... (constant c is same as for A177385). - Vaclav Kotesovec, Nov 06 2014

A193466 E.g.f.: Sum_{n>=0} x^n * Product_{k=1..n} cosh(k*x).

Original entry on oeis.org

1, 1, 2, 9, 84, 965, 12750, 225967, 5241880, 139776345, 4272148890, 155402034491, 6513558987540, 304210965928597, 15965624278036342, 941149313037711975, 61160783460181817520, 4356686998946564113457, 340627068039399668576946, 29015657457166019702796787
Offset: 0

Views

Author

Paul D. Hanna, Jul 27 2011

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 2*x^2/2! + 9*x^3/3! + 84*x^4/4! + 965*x^5/5! + 12750*x^6/6! + 225967*x^7/7! +...
where
A(x) = 1 + x*cosh(x) + x^2*cosh(x)*cosh(2*x) + x^3*cosh(x)*cosh(2*x)*cosh(3*x) + x^4*cosh(x)*cosh(2*x)*cosh(3*x)*cosh(4*x) +...
Also,
A(x) = 1 + x*exp(-x)*(1+exp(2*x))/2 + x^2*exp(-3*x)*(1+exp(2*x))*(1+exp(4*x))/2^2 +  x^3*exp(-6*x)*(1+exp(2*x))*(1+exp(4*x))*(1+exp(6*x))/2^3 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, x^m*prod(k=1, m, cosh(k*X))); n!*polcoeff(Egf, n)}

Formula

E.g.f.: Sum_{n>=0} (x/2)^n * exp(-n*(n+1)*x/2) * Product_{k=1..n} (1 + exp(2*k*x)).

A249564 a(n) = Sum_{k = 0..n} (k*(k+1)/2)^n.

Original entry on oeis.org

1, 1, 10, 244, 11378, 867395, 98204132, 15475158552, 3239399341956, 869652788703285, 291315412833808702, 119114020598815073524, 58386684085633233147478, 33797341113242898165287495, 22810507257314647778044971848, 17755122836243141585656207243952
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 01 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[Sum[Exp[x*k*(k+1)/2], {k, 0, n}], {x, 0, n}], {n, 0, 20}]
    Flatten[{1,Table[Sum[(k*(k+1)/2)^n,{k,1,n}],{n,1,20}]}]
  • PARI
    a(n) = sum(k=0, n, (k*(k+1)/2)^n); \\ Michel Marcus, Aug 24 2023

Formula

E.g.f.: Sum_{n>=0} exp(x*n*(n+1)/2).
a(n) ~ exp(3) * n^(2*n) / ((exp(2)-1) * 2^n).

Extensions

New name from Peter Bala, Aug 18 2023

A249698 E.g.f.: Sum_{n>=0} Product_{k=1..n} cosh(k*x).

Original entry on oeis.org

1, 0, 6, 0, 2426, 0, 7553776, 0, 90192976308, 0, 2939813898295990, 0, 213701821328573755046, 0, 30292525174041077292043440, 0, 7609302838629919155170452856136, 0, 3152886110080180503361685427596189430, 0, 2038143533263759863560759054752335955960482
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 04 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[Sum[Product[Cosh[k*x],{k,1,j}],{j,0,n}],{x,0,n}],{n,0,20}]
    nn=20; tab = ConstantArray[0,nn]; tab[[1]] = Series[Cosh[x],{x,0,nn}]; Do[tab[[k]] = Series[tab[[k-1]]*Cosh[k*x],{x,0,nn}],{k,2,nn}]; Flatten[{1,Table[kk!*Sum[Coefficient[tab[[k]],x^kk],{k,1,kk}],{kk,1,nn}]}] (* more efficient *)
  • PARI
    {a(n)=local(X=x+x*O(x^n), Egf); Egf=sum(m=0, n, prod(k=1, m, cosh(k*X))); n!*polcoeff(Egf, n)}
    for(n=0, 20, print1(a(n), ", "))

Formula

If n is even a(n) ~ c * d^n * n^(2*n) / (2^(2*n-2) * exp(2*n)), where d = 8.9061971328050809899679389417314..., c = 1.243878632396819914960247452516...

A249737 E.g.f.: Product_{k=1..n} cosh(k*x).

Original entry on oeis.org

1, 0, 5, 0, 1992, 0, 6167551, 0, 73432708224, 0, 2389444075877425, 0, 173496878823412858880, 0, 24573448663070711791073155, 0, 6168942712247503719875933929472, 0, 2554865971518520622455831203134760669, 0, 1650933998542152349112398040415912949710848, 0
Offset: 0

Views

Author

Vaclav Kotesovec, Nov 04 2014

Keywords

Crossrefs

Cf. A249698, A177385, A177387, A001044 (e.g.f.: product_{k=1..n} sinh(k*x)).

Programs

  • Mathematica
    Table[n!*SeriesCoefficient[Product[Cosh[k*x],{k,1,n}],{x,0,n}],{n,0,20}]
    nn = 20; tab = ConstantArray[0,nn]; tab[[1]] = Series[Cosh[x],{x,0,nn}]; Do[tab[[k]] = Series[tab[[k-1]]*Cosh[k*x],{x,0,nn}],{k,2,nn}]; Flatten[{1,Table[k!*Coefficient[tab[[k]],x^k],{k,1,nn}]}] (* more efficient *)

Formula

If n is even a(n) ~ c * d^n * n^(2*n) / (2^(2*n-2) * exp(2*n)), where d = 8.9061971328050809899679389417314..., c = 1.004120096780056350248342856...
Showing 1-8 of 8 results.