cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177456 a(n) = binomial(n^2,n+1)/n.

Original entry on oeis.org

2, 42, 1092, 35420, 1391280, 64425438, 3442573064, 208710267480, 14162980464360, 1063958304188780, 87677864005521636, 7865449972066576656, 763126447532235966816, 79629871834780293333510
Offset: 2

Views

Author

Michel Lagneau, May 09 2010

Keywords

Comments

n divides binomial(n^2,n+1).
Proof 1 :(n+1)*binomial(n^2,n+1) = n*(n-1)*binomial(n^2,n) => n divide binomial(n^2,n+1) because gcd(n,n+1) = 1.
Proof 2 : a(n) = binomial(n^2,n+1)/n = (n-1)*binomial(n^2-2,n-1)=> a(n) is an integer. - Michel Lagneau, May 13 2010

Examples

			For n=4, 1092 is in the sequence because binomial(16,5)/4 = 4368/4 = 1092.
		

Crossrefs

Programs

  • Magma
    [Binomial(n^2,n+1)/n: n in [2..30]]; // G. C. Greubel, Apr 29 2024
    
  • Maple
    with(numtheory):n0:=30:T:=array(1..n0-1):for n from 2 to n0 do:T[n-1]:= (binomial(n*n,n+1))/n:od:print(T):
  • Mathematica
    Table[Binomial[n^2,n+1]/n, {n,2,30}] (* G. C. Greubel, Apr 29 2024 *)
  • SageMath
    [binomial(n^2,n+1)/n for n in range(2,31)] # G. C. Greubel, Apr 29 2024

Formula

a(n) = binomial(n^2,n+1)/n.
From G. C. Greubel, Apr 29 2024: (Start)
a(n) = (n-1)*A177234(n).
a(n) = (n-1)*A177788(n)/n.
a(n) = n*(n-1)*A177784(n).
a(n) = A014062(n)/n. (End)