A177476 Number of partitions of order n avoiding the consecutive pattern 231'1.
1, 1, 2, 6, 20, 83, 402, 2245, 14192, 100650, 792508, 6859260, 64772648, 662630653, 7301841444, 86212535179, 1085834949064, 14530898302390, 205897508769218, 3079580500287978, 48485072137150344, 801518797091165406, 13881049047327393608, 251325130816997882224, 4748240560493406374592
Offset: 0
Keywords
Links
- S. Kitaev, Introduction to partially ordered patterns, Discrete Applied Mathematics 155 (2007), 929-944.
Crossrefs
Programs
-
Mathematica
ok[{x_, y_, , z}] := Not[x>z && y>z && y>x]; a[n_] := Length@ Select[ Permutations@ Range@ n, AllTrue[ Partition[#, 4, 1], ok] &]; a /@ Range[0, 9]
Extensions
a(0), a(10)-a(14) from Alois P. Heinz, Mar 10 2020
a(15)-a(16) from Giovanni Resta, Mar 11 2020
a(17)-a(24) from Max Alekseyev, Oct 02 2024
Comments