A177492 Products of squares of 2 or more distinct primes.
36, 100, 196, 225, 441, 484, 676, 900, 1089, 1156, 1225, 1444, 1521, 1764, 2116, 2601, 3025, 3249, 3364, 3844, 4225, 4356, 4761, 4900, 5476, 5929, 6084, 6724, 7225, 7396, 7569, 8281, 8649, 8836, 9025, 10404, 11025, 11236, 12100, 12321, 12996, 13225, 13924
Offset: 1
Keywords
Examples
36=2^2*3^2, 100=2^2*5*2, 196=2^2*7^2,..900=2^2*3^2*5^2,..
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
q:= n-> not isprime(n) and numtheory[issqrfree](n): map(x-> x^2, select(q, [$4..120]))[]; # Alois P. Heinz, Aug 02 2024
-
Mathematica
f1[n_]:=Length[Last/@FactorInteger[n]]; f2[n_]:=Union[Last/@FactorInteger[n]]; lst={};Do[If[f1[n]>1&&f2[n]=={2},AppendTo[lst,n]],{n,0,8!}];lst Reap[Do[{p, e} = Transpose[FactorInteger[n]]; If[Length[p]>1 && Union[e]=={2}, Sow[n]], {n, 13225}]][[2, 1]] (* Second program *) Select[Range[120], And[CompositeQ[#], SquareFreeQ[#]] &]^2 (* Michael De Vlieger, Aug 17 2023 *)
-
Python
from math import isqrt from sympy import primepi, mobius def A177492(n): def f(x): return n+1+primepi(x)+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1)) m, k = n+1, f(n+1) while m != k: m, k = k, f(k) return m**2 # Chai Wah Wu, Aug 02 2024
Formula
a(n) = A120944(n)^2. - R. J. Mathar, Dec 06 2010
Extensions
Definition corrected by R. J. Mathar, Dec 06 2010