A177498 a(n) is the maximal positive integer m for which exponents of prime(n) and prime(n+1) in the prime power factorization of m! are both powers of 2.
20, 98, 54, 38, 152, 94, 68, 260, 154, 332, 696, 386, 234, 476, 1002, 548, 1138, 2342, 656, 1342, 746, 800, 1648, 3332, 1750, 3530, 1852, 1016, 2158, 2226, 8904, 1250, 9684, 2566, 2668, 5378, 2838, 2940, 11634, 3076, 12414, 6368, 12804, 3382, 3586, 7358, 14754
Offset: 3
Keywords
Links
- Vladimir Shevelev, Compact integers and factorials, Acta Arithmetica 126 (2007), no. 3, 195-236.
Crossrefs
Programs
-
Mathematica
tp[n_] := Flatten[Position[FoldList[Plus, 0, IntegerExponent[Range[100000], n]], ?(IntegerQ[Log[2, #]] &)]]; Table[s = Intersection[tp[Prime[n]], tp[Prime[n + 1]]] - 1; s[[-1]], {n, 3, 60}] (* _T. D. Noe, Apr 10 2012 *)
Formula
The maximal m with the considered property is in interval [q, 2*(-1+q^2*(log(2)/(2*log(q)-1)+1))), where q=prime(n+1).
Extensions
Extended by T. D. Noe, Apr 10 2012
Comments