A177693 Triangle, read by rows, T(n, k) = p(n)/(p(k)*p(n-k)), where p(n) = Product_{j=1..n} A001607(j).
1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, 3, 3, 3, 1, 1, -1, 3, 3, -1, 1, 1, -5, -5, 15, -5, -5, 1, 1, 7, 35, 35, 35, 35, 7, 1, 1, 3, -21, -105, 35, -105, -21, 3, 1, 1, -17, 51, -357, 595, 595, -357, 51, -17, 1, 1, 11, 187, -561, -1309, -6545, -1309, -561, 187, 11, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -1, 1; 1, -1, -1, 1; 1, 3, 3, 3, 1; 1, -1, 3, 3, -1, 1; 1, -5, -5, 15, -5, -5, 1; 1, 7, 35, 35, 35, 35, 7, 1; 1, 3, -21, -105, 35, -105, -21, 3, 1; 1, -17, 51, -357, 595, 595, -357, 51, -17, 1; 1, 11, 187, -561, -1309, -6545, -1309, -561, 187, 11, 1;
References
- Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 47ff.
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Crossrefs
Cf. A001607.
Programs
-
Magma
A001607:=[n le 2 select n-1 else -Self(n-1)-2*Self(n-2): n in [1..100]]; p:= func< n | n eq 0 select 1 else (&*[A001607[j+1]: j in [1..n]]) >; A177693:= func< n,k | p(n)/(p(k)*p(n-k)) >; [A177693(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Apr 08 2024
-
Mathematica
A001607:= LinearRecurrence[{-1,-2}, {0,1}, 100]; p[n_]:= Product[A001607[[i+1]], {i,n}]; T[n_,k_]:= p[n]/(p[k]*p[n-k]); Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten
-
SageMath
A001607=BinaryRecurrenceSequence(-1,-2,0,1) def p(n): return product(A001607(j) for j in range(1,n+1)) def A177693(n,k): return p(n)/(p(k)*p(n-k)) flatten([[A177693(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Apr 08 2024
Formula
T(n, k) = p(n)/(p(k)*p(n-k)), where p(n) = Product_{j=1..n} A001607(j) and p(0) = 1.
T(n, n-k) = T(n, k).
Extensions
Edited by G. C. Greubel, Apr 08 2024