A177696 Symmetrical triangle read by rows: T(n, k) = m*(T(n-1, k-1) + T(n-1, k)), where T(n, 1) = T(n, n) = n, and m = 2.
1, 2, 2, 3, 8, 3, 4, 22, 22, 4, 5, 52, 88, 52, 5, 6, 114, 280, 280, 114, 6, 7, 240, 788, 1120, 788, 240, 7, 8, 494, 2056, 3816, 3816, 2056, 494, 8, 9, 1004, 5100, 11744, 15264, 11744, 5100, 1004, 9, 10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10
Offset: 1
Examples
Triangle begins as: 1; 2, 2; 3, 8, 3; 4, 22, 22, 4; 5, 52, 88, 52, 5; 6, 114, 280, 280, 114, 6; 7, 240, 788, 1120, 788, 240, 7; 8, 494, 2056, 3816, 3816, 2056, 494, 8; 9, 1004, 5100, 11744, 15264, 11744, 5100, 1004, 9; 10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10;
Links
- G. C. Greubel, Rows n = 1..50 of the triangle, flattened
Crossrefs
Cf. A051597 (m=1).
Programs
-
Magma
function T(n, k) // T = A177696 if k lt 1 or k gt n then return 0; elif k eq 1 or k eq n then return n; else return 2*(T(n-1, k-1) + T(n-1, k)); end if; end function; [T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 02 2024
-
Mathematica
m = 2;T[n_, k_]:= T[n, k]= If[k==1 || k==n, n, m*(T[n-1, k-1] + T[n-1, k])];Table[T[n, k], {n, 10}, {k, n}]//Flatten
-
SageMath
@CachedFunction def T(n, k): # T = A177696 if (k<0 or k>n): return 0 elif (k==1 or k==n): return n else: return 2*(T(n-1, k-1) + T(n-1, k)) flatten([[T(n, k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 02 2024
Formula
T(n, k) = m*(T(n-1, k-1) + T(n-1, k)), where T(n, 1) = T(n, n) = n, and m = 2.
From G. C. Greubel, Oct 02 2024: (Start)
Sum_{k=1..n} T(n, k) = (1/9)*(7*4^n + 6*n + 2).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1-(-1)^n)*(2-n) - [n=1]. (End)
Extensions
Edited by G. C. Greubel, Oct 02 2024