cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177696 Symmetrical triangle read by rows: T(n, k) = m*(T(n-1, k-1) + T(n-1, k)), where T(n, 1) = T(n, n) = n, and m = 2.

Original entry on oeis.org

1, 2, 2, 3, 8, 3, 4, 22, 22, 4, 5, 52, 88, 52, 5, 6, 114, 280, 280, 114, 6, 7, 240, 788, 1120, 788, 240, 7, 8, 494, 2056, 3816, 3816, 2056, 494, 8, 9, 1004, 5100, 11744, 15264, 11744, 5100, 1004, 9, 10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10
Offset: 1

Views

Author

Roger L. Bagula, May 11 2010

Keywords

Examples

			Triangle begins as:
   1;
   2,    2;
   3,    8,     3;
   4,   22,    22,     4;
   5,   52,    88,    52,     5;
   6,  114,   280,   280,   114,     6;
   7,  240,   788,  1120,   788,   240,     7;
   8,  494,  2056,  3816,  3816,  2056,   494,     8;
   9, 1004,  5100, 11744, 15264, 11744,  5100,  1004,    9;
  10, 2026, 12208, 33688, 54016, 54016, 33688, 12208, 2026, 10;
		

Crossrefs

Cf. A051597 (m=1).

Programs

  • Magma
    function T(n, k) // T = A177696
      if k lt 1 or k gt n then return 0;
      elif k eq 1 or k eq n then return n;
      else return 2*(T(n-1, k-1) + T(n-1, k));
      end if;
    end function;
    [T(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Oct 02 2024
    
  • Mathematica
    m = 2;T[n_, k_]:= T[n, k]= If[k==1 || k==n, n, m*(T[n-1, k-1] + T[n-1, k])];Table[T[n, k], {n, 10}, {k, n}]//Flatten
  • SageMath
    @CachedFunction
    def T(n, k): # T = A177696
        if (k<0 or k>n): return 0
        elif (k==1 or k==n): return n
        else: return 2*(T(n-1, k-1) + T(n-1, k))
    flatten([[T(n, k) for k in range(1,n+1)] for n in range(1,13)]) # G. C. Greubel, Oct 02 2024

Formula

T(n, k) = m*(T(n-1, k-1) + T(n-1, k)), where T(n, 1) = T(n, n) = n, and m = 2.
From G. C. Greubel, Oct 02 2024: (Start)
Sum_{k=1..n} T(n, k) = (1/9)*(7*4^n + 6*n + 2).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = (1-(-1)^n)*(2-n) - [n=1]. (End)

Extensions

Edited by G. C. Greubel, Oct 02 2024