A177717 A symmetrical triangle based on the Fibonacci Polynomials: p(x,n)=f(n,x)+x^(n-1)*f(n,1/x).
2, 1, 1, 2, 0, 2, 1, 2, 2, 1, 2, 0, 6, 0, 2, 1, 3, 4, 4, 3, 1, 2, 0, 11, 0, 11, 0, 2, 1, 4, 6, 10, 10, 6, 4, 1, 2, 0, 17, 0, 30, 0, 17, 0, 2, 1, 5, 8, 20, 21, 21, 20, 8, 5, 1
Offset: 0
Examples
{2}, {1, 1}, {2, 0, 2}, {1, 2, 2, 1}, {2, 0, 6, 0, 2}, {1, 3, 4, 4, 3, 1}, {2, 0, 11, 0, 11, 0, 2}, {1, 4, 6, 10, 10, 6, 4, 1}, {2, 0, 17, 0, 30, 0, 17, 0, 2}, {1, 5, 8, 20, 21, 21, 20, 8, 5, 1}
References
- Function form used from:http://functions.wolfram.com/HypergeometricFunctions/Fibonacci2General/26/01/02/0001/
Crossrefs
Cf. A168561
Programs
-
Mathematica
f[n_, z_] := (1/(2 Sqrt[4 + z^2])) (-HypergeometricPFQ[{}, {}, n ((-I) Pi - \ Log[(1/2) (z + Sqrt[4 + z^2])])] - HypergeometricPFQ[{}, {}, n (I Pi - Log[( 1/2) (z + Sqrt[4 + z^2])])] + 2 HypergeometricPFQ[{}, {}, n Log[(1/ 2) (z + Sqrt[4 + z^2])]]); Table[CoefficientList[FullSimplify[ExpandAll[f[n, x] + x^(n - 1)*f[n, 1/x]]], x], {n, 1, 10}]; Flatten[%]
Formula
f(x,n)=(1/(2 Sqrt[4 + z^2])) (-HypergeometricPFQ[{}, {}, n ((-I) Pi - Log[(1/2) (z + \ Sqrt[4 + z^2])])] - HypergeometricPFQ[{}, {}, n (I Pi - Log[(1/2) (z + Sqrt[ 4 + z^2])])] + 2 HypergeometricPFQ[{}, {}, n Log[(1/2) (z + Sqrt[4 + z^2])]]);
p(x,n)=f(x,n)+x^(n-1)*f(1/x,n);
t(n,m)=coefficients(p(x,n))
Comments