cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A372433 Binary weight (number of ones in binary expansion) of the n-th squarefree number.

Original entry on oeis.org

1, 1, 2, 2, 2, 3, 2, 3, 3, 3, 4, 2, 3, 3, 3, 4, 3, 4, 4, 5, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 5, 4, 4, 5, 4, 4, 5, 5, 5, 2, 2, 3, 3, 3, 4, 3, 3, 4, 4, 5, 3, 4, 4, 4, 5, 4, 5, 5, 5, 6, 3, 4, 4, 5, 4, 4, 5, 5, 5, 6, 4, 4, 5, 5, 6, 5, 6, 7, 2, 2, 3, 3, 3, 3, 3, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 04 2024

Keywords

Crossrefs

Restriction of A000120 to A005117.
For prime instead of squarefree we have A014499, zeros A035103.
Counting zeros instead of ones gives A372472, cf. A023416, A372473.
For binary length instead of weight we have A372475.
A003714 lists numbers with no successive binary indices.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A145037 counts ones minus zeros in binary expansion, cf. A031443, A031444, A031448, A097110.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.
A372516 counts ones minus zeros in binary expansion of primes, cf. A177718, A177796, A372538, A372539.

Programs

  • Mathematica
    DigitCount[Select[Range[100],SquareFreeQ],2,1]
    Total[IntegerDigits[#,2]]&/@Select[Range[200],SquareFreeQ] (* Harvey P. Dale, Feb 14 2025 *)
  • Python
    from math import isqrt
    from sympy import mobius
    def A372433(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return int(m).bit_count() # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A000120(A005117(n)).
a(n) + A372472(n) = A372475(n) = A070939(A005117(n)).

A372516 Number of ones minus number of zeros in the binary expansion of the n-th prime number.

Original entry on oeis.org

0, 2, 1, 3, 2, 2, -1, 1, 3, 3, 5, 0, 0, 2, 4, 2, 4, 4, -1, 1, -1, 3, 1, 1, -1, 1, 3, 3, 3, 1, 7, -2, -2, 0, 0, 2, 2, 0, 2, 2, 2, 2, 6, -2, 0, 2, 2, 6, 2, 2, 2, 6, 2, 6, -5, -1, -1, 1, -1, -1, 1, -1, 1, 3, 1, 3, 1, -1, 3, 3, -1, 3, 5, 3, 5, 7, -1, 1, -1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, May 13 2024

Keywords

Comments

Absolute value is A177718.

Examples

			The binary expansion of 83 is (1,0,1,0,0,1,1), and 83 is the 23rd prime, so a(23) = 4 - 3 = 1.
		

Crossrefs

The sum instead of difference is A035100, firsts A372684 (primes A104080).
The negative version is A037861(A000040(n)).
Restriction of A145037 to the primes.
The unsigned version is A177718.
- Positions of zeros are A177796, indices of the primes A066196.
- Positions of positive terms are indices of the primes A095070.
- Positions of negative terms are indices of the primes A095071.
- Positions of negative ones are A372539, indices of the primes A095072.
- Positions of ones are A372538, indices of the primes A095073.
- Positions of nonnegative terms are indices of the primes A095074.
- Positions of nonpositive terms are indices of the primes A095075.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A030190 gives binary expansion, reversed A030308.
A035103 counts zeros in binary expansion of primes, firsts A372474.
A048793 lists binary indices, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A101211 lists run-lengths in binary expansion, row-lengths A069010.
A372471 lists the binary indices of each prime.

Programs

  • Mathematica
    Table[DigitCount[Prime[n],2,1]-DigitCount[Prime[n],2,0],{n,100}]
    DigitCount[#,2,1]-DigitCount[#,2,0]&/@Prime[Range[100]] (* Harvey P. Dale, May 09 2025 *)

Formula

a(n) = A000120(A000040(n)) - A080791(A000040(n)).
a(n) = A014499(n) - A035103(n).
a(n) = A145037(A000040(n))

A372538 Numbers k such that the number of ones minus the number of zeros in the binary expansion of the k-th prime number is 1.

Original entry on oeis.org

3, 8, 20, 23, 24, 26, 30, 58, 61, 63, 65, 67, 78, 80, 81, 82, 84, 88, 185, 187, 194, 200, 201, 203, 213, 214, 215, 221, 225, 226, 227, 234, 237, 246, 249, 253, 255, 256, 257, 259, 266, 270, 280, 284, 287, 290, 573, 578, 586, 588, 591, 593, 611, 614, 615, 626
Offset: 1

Views

Author

Gus Wiseman, May 13 2024

Keywords

Examples

			The binary expansion of 83 is (1,0,1,0,0,1,1) with ones minus zeros 4 - 3 = 1, and 83 is the 23rd prime, so 23 is in the sequence.
The primes A000040(a(n)) together with their binary expansions and binary indices begin:
     5:           101 ~ {1,3}
    19:         10011 ~ {1,2,5}
    71:       1000111 ~ {1,2,3,7}
    83:       1010011 ~ {1,2,5,7}
    89:       1011001 ~ {1,4,5,7}
   101:       1100101 ~ {1,3,6,7}
   113:       1110001 ~ {1,5,6,7}
   271:     100001111 ~ {1,2,3,4,9}
   283:     100011011 ~ {1,2,4,5,9}
   307:     100110011 ~ {1,2,5,6,9}
   313:     100111001 ~ {1,4,5,6,9}
   331:     101001011 ~ {1,2,4,7,9}
   397:     110001101 ~ {1,3,4,8,9}
   409:     110011001 ~ {1,4,5,8,9}
   419:     110100011 ~ {1,2,6,8,9}
   421:     110100101 ~ {1,3,6,8,9}
   433:     110110001 ~ {1,5,6,8,9}
   457:     111001001 ~ {1,4,7,8,9}
  1103:   10001001111 ~ {1,2,3,4,7,11}
  1117:   10001011101 ~ {1,3,4,5,7,11}
  1181:   10010011101 ~ {1,3,4,5,8,11}
  1223:   10011000111 ~ {1,2,3,7,8,11}
		

Crossrefs

Restriction of A031448 to the primes, positions of ones in A145037.
Taking primes gives A095073, negative A095072.
Positions of ones in A372516, absolute value A177718.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A030190 gives binary expansion, reversed A030308.
A035103 counts zeros in binary expansion of primes, firsts A372474.
A048793 lists binary indices, reverse A272020, sum A029931.
A070939 gives the length of an integer's binary expansion.
A101211 lists run-lengths in binary expansion, row-lengths A069010.
A372471 lists binary indices of primes.

Programs

  • Mathematica
    Select[Range[1000],DigitCount[Prime[#],2,1]-DigitCount[Prime[#],2,0]==1&]

A372539 Numbers k such that the number of ones minus the number of zeros in the binary expansion of the k-th prime number is -1.

Original entry on oeis.org

7, 19, 21, 25, 56, 57, 59, 60, 62, 68, 71, 77, 79, 87, 175, 177, 179, 180, 186, 188, 189, 192, 193, 195, 196, 197, 204, 210, 212, 216, 218, 243, 244, 248, 254, 262, 263, 265, 279, 567, 572, 576, 577, 583, 592, 598, 599, 600, 602, 603, 605, 606, 610, 613, 616
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Examples

			The binary expansion of 17 is (1,0,0,0,1) with ones minus zeros 2 - 3 = -1, and 17 is the 7th prime, 7 is in the sequence.
The primes A000040(a(n)) together with their binary expansions and binary indices begin:
    17:         10001 ~ {1,5}
    67:       1000011 ~ {1,2,7}
    73:       1001001 ~ {1,4,7}
    97:       1100001 ~ {1,6,7}
   263:     100000111 ~ {1,2,3,9}
   269:     100001101 ~ {1,3,4,9}
   277:     100010101 ~ {1,3,5,9}
   281:     100011001 ~ {1,4,5,9}
   293:     100100101 ~ {1,3,6,9}
   337:     101010001 ~ {1,5,7,9}
   353:     101100001 ~ {1,6,7,9}
   389:     110000101 ~ {1,3,8,9}
   401:     110010001 ~ {1,5,8,9}
   449:     111000001 ~ {1,7,8,9}
  1039:   10000001111 ~ {1,2,3,4,11}
  1051:   10000011011 ~ {1,2,4,5,11}
  1063:   10000100111 ~ {1,2,3,6,11}
  1069:   10000101101 ~ {1,3,4,6,11}
  1109:   10001010101 ~ {1,3,5,7,11}
  1123:   10001100011 ~ {1,2,6,7,11}
  1129:   10001101001 ~ {1,4,6,7,11}
  1163:   10010001011 ~ {1,2,4,8,11}
		

Crossrefs

Restriction of A031444 (positions of '-1's in A145037) to A000040.
Taking primes gives A095072.
Positions of negative ones in A372516, absolute value A177718.
The negative version is A372538, taking primes A095073.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A030190 gives binary expansion, reversed A030308.
A035103 counts zeros in binary expansion of primes, firsts A372474.
A048793 lists binary indices, reverse A272020, sum A029931.
A070939 gives the length of an integer's binary expansion.
A101211 lists run-lengths in binary expansion, row-lengths A069010.
A372471 lists binary indices of primes.

Programs

  • Mathematica
    Select[Range[1000],DigitCount[Prime[#],2,1]-DigitCount[Prime[#],2,0]==-1&]

A308430 Number of 0's minus number of 1's among the edge truncated binary representations of the first n prime numbers.

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 3, 4, 3, 2, -1, 1, 3, 3, 1, 1, -1, -3, 0, 1, 4, 3, 4, 5, 8, 9, 8, 7, 6, 7, 2, 6, 10, 12, 14, 14, 14, 16, 16, 16, 16, 16, 12, 16, 18, 18, 18, 14, 14, 14, 14, 10, 10, 6, 13, 16, 19, 20, 23, 26, 27, 30, 31, 30, 31, 30, 31, 34, 33, 32, 35, 34, 31, 30, 27, 22, 25, 26, 29, 30, 31, 32, 29, 30, 27, 24, 27, 28, 27, 24, 23, 18, 15, 12, 9, 4, -1, 5, 9, 11
Offset: 1

Views

Author

Andrea Fornaciari, May 26 2019

Keywords

Comments

By "edge truncated" we mean removing the first and last digit. For prime(3)=5 which has binary representation 101 edge truncating yields the string '0'. If there are 2 digits, then edge truncation yields the empty string ''. We count zero 1's and zero 0's in the empty string. The only cases of this are prime(1)=2 and prime(2)=3 which have binary representations 10 and 11.

Crossrefs

Programs

  • PARI
    s=0; forprime (p=2, 541, print1 (s += #binary(p\2)+1-2*hammingweight(p\2) ", ")) \\ Rémy Sigrist, Jul 13 2019
    
  • Python
    import gmpy2
    def dec2bin(x):
        return str(bin(x))[2:]
    def digitBalance(string):
        s = 0
        for char in string:
            if int(char) > 0:
                s -= 1
            else:
                s += 1
        return s
    N = 100 # number of terms
    seq = [0]
    prime = 2
    for i in range(N-1):
        prime = gmpy2.next_prime(prime)
        binary = dec2bin(prime)
        truncated = binary[1:-1]
        term = seq[-1] + digitBalance(truncated)
        seq.append(term)
    print(seq) # Jonas K. Sønsteby, May 27 2019
    
  • Sage
    def A308430list(b):
        L = []; s = 0
        for p in prime_range(2, b):
            q = (p//2).digits(2)
            s += 1 + len(q) - 2*sum(q)
            L.append(s)
        return L
    print(A308430list(542)) # Peter Luschny, Jul 13 2019

Formula

a(n) = a(n-1) + bitlength(prime(n)2) - 2 * popcount(prime(n)_2) + 2, n > 1. - _Sean A. Irvine, May 27 2019
a(n) = Sum_{k=2..n} (A035100(k) - 2*A014499(k) + 2) = Sum_{k=2..n} (A070939(A000040(k)) - 2*A000120(A000040(k)) + 2). - Daniel Suteu, Jul 13 2019

A350700 a(n) is the number of 1's minus the number of 0's in A004685(n).

Original entry on oeis.org

-1, 1, 1, 0, 2, 1, -2, 2, 1, -2, 4, 1, -4, 2, 3, -2, 6, 3, -4, -3, 3, -2, 1, 7, -4, -5, 1, 4, 3, 5, -4, 1, -4, 4, 1, -2, 0, 3, -6, -2, 5, 6, 0, 3, 6, -1, 11, -6, -9, 3, 2, -1, -1, -2, -5, 6, 4, -7, 8, 0, -9, -4, 10, 3, -4, 6, -7, 6, -17, -1, -2, -5, 1, 4, -3
Offset: 0

Views

Author

Karl-Heinz Hofmann, Jan 18 2022

Keywords

Examples

			A004685(0) = 0; this term has 0 ones and 1 zero. So a(0) = 0 - 1 = -1.
A004685(7) = 1101; this term has 3 ones and 1 zero. So a(7) = 3 - 1 = 2.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Subtract @@ DigitCount[Fibonacci[n], 2, {1, 0}]; Array[a, 75, 0] (* Amiram Eldar, Jan 22 2022 *)
  • Python
    from sympy import fibonacci
    print([(bin(fibonacci(n))[2:].count("1") - bin(fibonacci(n))[2:].count("0")) for n in range (0,100)])

Formula

a(n) = A145037(A000045(n)) for n >= 1.
a(n) = 0 if and only if n is in A214852. - Amiram Eldar, Jan 22 2022

A177681 Primes p such that abs(A037861(p)) is a prime number.

Original entry on oeis.org

3, 7, 11, 13, 23, 29, 31, 43, 53, 79, 103, 107, 109, 127, 131, 137, 151, 157, 167, 173, 179, 181, 193, 199, 211, 227, 229, 233, 241, 257, 311, 317, 347, 349, 359, 367, 373, 379, 383, 431, 439, 443, 461, 463, 467, 479, 487, 491, 499, 503, 509, 523, 547, 571
Offset: 1

Views

Author

Juri-Stepan Gerasimov, May 14 2010

Keywords

Crossrefs

Extensions

Entries checked, keyword:base,less added and incorrect comment removed by R. J. Mathar, May 18 2010
Showing 1-7 of 7 results.