A177719 Number of line segments connecting exactly 3 points in an n X n grid of points.
0, 0, 8, 24, 60, 112, 212, 344, 548, 800, 1196, 1672, 2284, 2992, 3988, 5128, 6556, 8160, 10180, 12424, 15068, 17968, 21604, 25576, 30092, 34976, 40900, 47288, 54500, 62224, 70972, 80296, 90740, 101824, 114700, 128344, 143212, 158896, 176836
Offset: 1
Keywords
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- Seppo Mustonen, On lines going through a given number of points in a rectangular grid of points
- Seppo Mustonen, On lines going through a given number of points in a rectangular grid of points [Local copy]
Programs
-
Mathematica
j=2; a[n_]:=a[n]=If[n<=j,0,2*a1[n]-a[n-1]+R1[n]] a1[n_]:=a1[n]=If[n<=j,0,2*a[n-1]-a1[n-1]+R2[n]] R1[n_]:=R1[n]=If[n<=j,0,R1[n-1]+4*S[n]] R2[n_]:=(n-1)*S[n] S[n_]:=If[Mod[n-1,j]==0,EulerPhi[(n-1)/j],0] Table[a[n],{n,1,50}]
-
PARI
{ A177719(n) = if(n<2, return(0)); 2*(n*(n-2) + sum(i=1,n-1,sum(j=1,n-1, (gcd(i,j)==2)*(n-i)*(n-j))) ); } \\ Max Alekseyev, Jul 08 2019
-
Python
from sympy import totient def A177719(n): return 4*((n-1)*(n-2) + sum(totient(i)*(n-2*i)*(n-i) for i in range(2,n//2+1))) # Chai Wah Wu, Aug 18 2021
Formula
a(n) = Sum_{-n < i,j < n; gcd(i,j)=2} (n-|i|)*(n-|j|)/2. For n>1, a(n) = 2 * ( n*(n-2) + Sum_{i,j=1..n-1; gcd(i,j)=2} (n-i)*(n-j) ). - Max Alekseyev, Jul 08 2019
a(n) = 4*((n-1)*(n-2) + Sum_{i=2..floor(n/2)} (n-2*i)*(n-i)*phi(i)). - Chai Wah Wu, Aug 18 2021
Comments