A177727 a(0)=1; a(n) = a(n-1) * Fibonacci(3+n) * Fibonacci(1+n) / (Fibonacci(n))^2, n > 1.
1, 3, 30, 180, 1300, 8736, 60333, 412335, 2829310, 19384200, 132882696, 910735488, 6242420665, 42785803515, 293259265950, 2010026277756, 13776931957468, 94428478367520, 647222466507045, 4436128656563175, 30405678471399166, 208403619747957648, 1428419662108160400
Offset: 0
References
- Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986, p. 93.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Index entries for linear recurrences with constant coefficients, signature (5,15,-15,-5,1)
Programs
-
Magma
I:=[1, 3, 30, 180, 1300]; [n le 5 select I[n] else 5*Self(n-1)+15*Self(n-2)-15*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..30]]; // Vincenzo Librandi, Nov 18 2011
-
Maple
with (combinat): A177727 := proc(n) if n = 0 then 1; else procname(n-1)*fibonacci(3+n)*fibonacci(1+n)/fibonacci(n)^2 ; end if; end proc: seq(A177727(n),n=0..10) ; # R. J. Mathar, Nov 17 2011
-
Mathematica
a0 = 4; b0 = 2; c0 = 1; a[0] = 1; a[n_] := a[n] = (Fibonacci[(a0 + n - 1)]*Fibonacci[( b0 + n - 1)]/(Fibonacci[n]*Fibonacci[(c0 + n - 1)]))*a[n - 1]; Table[a[n], {n, 0, 30}] LinearRecurrence[{5,15,-15,-5,1},{1,3,30,180,1300},30] (* Vincenzo Librandi, Nov 18 2011 *)
Formula
G.f.: ( -1+2*x ) / ( (x-1)*(x^2+3*x+1)*(x^2-7*x+1) ). - R. J. Mathar, Nov 17 2011
Comments