A177734 Largest k such that prime(n) divides the numerator of the k-th harmonic number (=A001008(k)).
22, 24, 102728, 1011849771855214912968404217247, 168, 288, 848874360, 528, 695552, 886725671, 50641, 1680, 2359785, 10776888210, 414839198, 42176361744, 226972, 4488, 9094138358932, 5328, 6240
Offset: 2
Links
- Max Alekseyev, Table of n, a(n) for n = 2..220
- David W. Boyd, A p-adic study of the partial sums of the harmonic series, Experimental Math., Vol. 3 (1994), No. 4, 287-302. [WARNING: Table 2 contains miscalculations for p=19, 47, 59, ... - _Max Alekseyev_, Feb 10 2016]
- Leonardo Carofiglio, Giacomo Cherubini, and Alessandro Gambini, On Eswarathasan--Levine and Boyd's conjectures for harmonic numbers, arXiv:2503.15714 [math.NT], 2025.
Formula
For p = prime(n) in A092101, a(n) = p^2 - 1.
Extensions
a(5) computed by Boyd.
a(8)-a(22) from Max Alekseyev, Oct 23 2012
Comments