cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177747 Convolution of A008805 (triangular numbers repeated) with itself.

Original entry on oeis.org

1, 2, 7, 12, 27, 42, 77, 112, 182, 252, 378, 504, 714, 924, 1254, 1584, 2079, 2574, 3289, 4004, 5005, 6006, 7371, 8736, 10556, 12376, 14756, 17136, 20196, 23256, 27132, 31008, 35853, 40698, 46683, 52668, 59983, 67298, 76153, 85008, 95634, 106260, 118910, 131560, 146510
Offset: 0

Views

Author

Gary W. Adamson, Dec 17 2010

Keywords

Examples

			As a multiplication table array:
.
1, 1, 3, 3, 6,...
1, 1, 3, 3,......
3, 3, 9,.........
3, 3,............
6,...............
.
Then taking antidiagonal sums of terms, we obtain 1, (1 + 1) = 2, (3 + 1 + 3) = 7,  (3 + 3 + 3 + 3) = 12, (6, + 3 + 9 + 3 + 6) = 27, etc.
		

Crossrefs

Cf. A008805.

Programs

  • Magma
    A008805:=func; [&+[A008805(i)*A008805(n-i): i in [0..n]]: n in [0..44]]; // Bruno Berselli, Mar 23 2012
  • Mathematica
    lst = CoefficientList[ Series[1/((1 - x) (1 - x^2)^2), {x, 0, 111}], x]; t[n_, k_] := lst[[n]] lst[[k]]; f[n_] := Sum[ t[n - m + 1, m], {m, n}]; Array[f, 45] (* Robert G. Wilson v, Dec 18 2010 *)
    LinearRecurrence[{2, 3, -8, -2, 12, -2, -8, 3, 2, -1}, {1, 2, 7, 12, 27, 42, 77, 112, 182, 252}, 45] (* Bruno Berselli, Mar 23 2012 *)

Formula

Square (1 + x + 3x^2 + 3x^3 + 6x^4 + 6x^5 + ...)
G.f.: 1/((x+1)^4*(x-1)^6). [Bruno Berselli, Mar 23 2012]
a(n) = (n+5)*(2*n*(n+10)*(n^2+10*n+35)+5*(2*n*(n+10)+39)*(-1)^n+573)/3840. [Bruno Berselli, Mar 23 2012]

Extensions

More terms from Robert G. Wilson v, Dec 18 2010
Definition rewritten by Bruno Berselli, Mar 23 2012