A177747 Convolution of A008805 (triangular numbers repeated) with itself.
1, 2, 7, 12, 27, 42, 77, 112, 182, 252, 378, 504, 714, 924, 1254, 1584, 2079, 2574, 3289, 4004, 5005, 6006, 7371, 8736, 10556, 12376, 14756, 17136, 20196, 23256, 27132, 31008, 35853, 40698, 46683, 52668, 59983, 67298, 76153, 85008, 95634, 106260, 118910, 131560, 146510
Offset: 0
Examples
As a multiplication table array: . 1, 1, 3, 3, 6,... 1, 1, 3, 3,...... 3, 3, 9,......... 3, 3,............ 6,............... . Then taking antidiagonal sums of terms, we obtain 1, (1 + 1) = 2, (3 + 1 + 3) = 7, (3 + 3 + 3 + 3) = 12, (6, + 3 + 9 + 3 + 6) = 27, etc.
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- Brian Hopkins and Aram Tangboonduangjit, Water Cells in Compositions of 1s and 2s, arXiv:2412.11528 [math.CO], 2024. See p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,3,-8,-2,12,-2,-8,3,2,-1).
Crossrefs
Cf. A008805.
Programs
-
Magma
A008805:=func; [&+[A008805(i)*A008805(n-i): i in [0..n]]: n in [0..44]]; // Bruno Berselli, Mar 23 2012
-
Mathematica
lst = CoefficientList[ Series[1/((1 - x) (1 - x^2)^2), {x, 0, 111}], x]; t[n_, k_] := lst[[n]] lst[[k]]; f[n_] := Sum[ t[n - m + 1, m], {m, n}]; Array[f, 45] (* Robert G. Wilson v, Dec 18 2010 *) LinearRecurrence[{2, 3, -8, -2, 12, -2, -8, 3, 2, -1}, {1, 2, 7, 12, 27, 42, 77, 112, 182, 252}, 45] (* Bruno Berselli, Mar 23 2012 *)
Formula
Square (1 + x + 3x^2 + 3x^3 + 6x^4 + 6x^5 + ...)
G.f.: 1/((x+1)^4*(x-1)^6). [Bruno Berselli, Mar 23 2012]
a(n) = (n+5)*(2*n*(n+10)*(n^2+10*n+35)+5*(2*n*(n+10)+39)*(-1)^n+573)/3840. [Bruno Berselli, Mar 23 2012]
Extensions
More terms from Robert G. Wilson v, Dec 18 2010
Definition rewritten by Bruno Berselli, Mar 23 2012