cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A210569 a(n) = (n-3)*(n-2)*(n-1)*n*(n+1)/30.

Original entry on oeis.org

0, 0, 0, 0, 4, 24, 84, 224, 504, 1008, 1848, 3168, 5148, 8008, 12012, 17472, 24752, 34272, 46512, 62016, 81396, 105336, 134596, 170016, 212520, 263120, 322920, 393120, 475020, 570024, 679644, 805504, 949344, 1113024, 1298528, 1507968, 1743588, 2007768, 2303028
Offset: 0

Views

Author

Bruno Berselli, Mar 23 2012

Keywords

Comments

The following sequences are provided by the formula n*binomial(n,k) - binomial(n,k+1) = k*binomial(n+1,k+1):
. A000217(n) for k=1,
. A007290(n+1) for k=2,
. A050534(n) for k=3,
. a(n) for k=4,
. A000910(n+1) for k=5.
Sum of reciprocals of a(n), for n>3: 5/16.
From a(2), convolution of oblong numbers (A002378) with themselves. - Bruno Berselli, Oct 24 2016

Crossrefs

First differences are in A033488.

Programs

  • Magma
    [4*Binomial(n+1,5): n in [0..38]];
    
  • Maple
    f:=n->(n^5-5*n^3+4*n)/30;
    [seq(f(n),n=0..50)]; # N. J. A. Sloane, Mar 23 2014
  • Mathematica
    LinearRecurrence[{6,-15,20,-15,6,-1}, {0,0,0,0,4,24}, 39]
    CoefficientList[Series[4x^4/(1-x)^6, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 24 2014 *)
    Times@@@Partition[Range[-3,40],5,1]/30 (* Harvey P. Dale, Sep 19 2020 *)
  • Maxima
    makelist(coeff(taylor(4*x^4/(1-x)^6, x, 0, n), x, n), n, 0, 38);
    
  • PARI
    a(n)=(n-3)*(n-2)*(n-1)*n*(n+1)/30 \\ Charles R Greathouse IV, Oct 07 2015
    
  • SageMath
    [4*binomial(n+1,5) for n in (0..40)] # G. C. Greubel, May 23 2022

Formula

G.f.: 4*x^4/(1-x)^6.
a(n) = n*binomial(n,4)-binomial(n,5) = 4*binomial(n+1,5) = 4*A000389(n+1).
a(n) = 2*A177747(2*n-7), with A177747(-7) = A177747(-5) = A177747(-3) = A177747(-1) = 0.
(n-4)*a(n) = (n+1)*a(n-1).
E.g.f.: (1/30)*x^4*(5+x)*exp(x). - G. C. Greubel, May 23 2022
Sum_{n>=4} (-1)^n/a(n) = 20*log(2) - 655/48. - Amiram Eldar, Jun 02 2022

A157901 Triangle read by rows: A000012 * A157898.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 3, 6, 10, 8, 8, 3, 9, 16, 24, 16, 16, 4, 12, 28, 40, 56, 32, 32, 4, 16, 40, 80, 96, 128, 64, 64, 5, 20, 60, 120, 216, 224, 288, 128, 128, 5, 25, 80, 200, 336, 560, 512, 640, 256, 256, 6, 30, 110, 280, 616, 896, 1408, 1152, 1408, 512, 512
Offset: 0

Views

Author

Keywords

Comments

Multiplication of the lower triangular matrix A157898 from the left by A000012 means: these are partial column sums of A157898.

Examples

			First few rows of the triangle, n>=0:
  1;
  1,  1;
  2,  2,  2;
  2,  4,  4,   4;
  3,  6, 10,   8,   8;
  3,  9, 16,  24,  16,  16;
  4, 12, 28,  40,  56,  32,  32;
  4, 16, 40,  80,  96, 128,  64,  64;
  5, 20, 60, 120, 216, 224, 288, 128, 128;
  5, 25, 80, 200, 336, 560, 512, 640, 256, 256;
		

Crossrefs

Columns: A004526 (k=0), A002620 (k=1), A006584 (k=2), 4*A096338 (k=3), 8*A177747 (k=4), 16*A299337 (k=5), 32*A178440 (k=6).
Sums include: A105635(n+1) (row), A166486(n+1) (alternating sign diagonal), A232801(n+1) (diagonal).

Programs

  • Magma
    A011782:= func< n | n eq 0 select 1 else 2^(n-1) >;
    function t(n, k) // t = A059576
      if k eq 0 or k eq n then return A011782(n);
      else return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1);
      end if; return t;
    end function;
    A157898:= func< n, k | (&+[(-1)^(n-j)*Binomial(n, j)*t(j, k): j in [k..n]]) >;
    A157071:= func< n,k | (&+[A157898(j+k,k): j in [0..n-k]]) >;
    [A157071(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 27 2025
    
  • Mathematica
    t[n_, k_]:= t[n,k]= If[k==0 || k==n, 2^(n-1) +Boole[n==0]/2, 2*t[n-1,k-1] +2*t[n-1,k] - (2 -Boole[n==2])*t[n-2,k-1]]; (* t = A059576 *)
    A157898[n_, k_]:= A157898[n,k]= Sum[(-1)^(n-j)*Binomial[n,j]*t[j,k], {j,k,n}];
    A157901[n_, k_]:= A157901[n,k]= Sum[A157898[j+k,k], {j,0,n-k}];
    Table[A157901[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 27 2025 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A059576
        if (k==0 or k==n): return bool(n==0)/2 + 2^(n-1) # A011782
        else: return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1)
    def A157898(n, k): return sum((-1)^(n+k-j)*binomial(n, j+k)*t(j+k, k) for j in range(n-k+1))
    def A157071(n,k): return sum(A157898(j+k,k) for j in range(n-k+1))
    print(flatten([[A157071(n,k) for k in range(n+1)] for n in range(10)])) # G. C. Greubel, Aug 27 2025

Formula

T(n,k) = Sum_{j=0..n} A157898(j,k).

Extensions

Edited by the Associate Editors of the OEIS, Apr 10 2009
More terms from G. C. Greubel, Aug 27 2025
Showing 1-2 of 2 results.