cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A105635 a(n) = (2*Pell(n+1) - (1+(-1)^n))/4.

Original entry on oeis.org

0, 1, 2, 6, 14, 35, 84, 204, 492, 1189, 2870, 6930, 16730, 40391, 97512, 235416, 568344, 1372105, 3312554, 7997214, 19306982, 46611179, 112529340, 271669860, 655869060, 1583407981, 3822685022, 9228778026, 22280241074, 53789260175, 129858761424, 313506783024
Offset: 0

Views

Author

Paul Barry, Apr 16 2005

Keywords

Comments

Transform of Pell(n) under the Riordan array (1/(1-x^2), x).
Starting (1, 2, 6, 14, 35, ...) equals row sums of triangle A157901. - Gary W. Adamson, Mar 08 2009
Starting with 1 = row sums of a triangle with the Pell series shifted down twice for columns > 1. - Gary W. Adamson, Mar 03 2010
Also the matching and vertex cover numbers of the n-Pell graph. - Eric W. Weisstein, Aug 01 2023

Crossrefs

Cf. A000129.
Cf. A157901. - Gary W. Adamson, Mar 08 2009

Programs

  • GAP
    a:=[0,1,2,6];; for n in [5..30] do a[n]:=2*a[n-1]+2*a[n-2]-2*a[n-3] -a[n-4]; od; a; # G. C. Greubel, Oct 27 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 30); [0] cat Coefficients(R!( x/((1-x^2)*(1-2*x-x^2)) )); // G. C. Greubel, Oct 27 2019
    
  • Maple
    with(combinat): seq(iquo(fibonacci(n+1,2),2),n=0..30); # Zerinvary Lajos, Apr 20 2008
    # second Maple program:
    a:= n-> (<<1|1|0|0>, <3|0|1|0>, <1|0|0|0>, <1|0|0|1>>^n)[4, 1]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 24 2008
  • Mathematica
    Table[(Fibonacci[n + 1, 2] - Fibonacci[n + 1, 0])/2, {n, 0, 30}] (* G. C. Greubel, Oct 27 2019 *)
    Floor[Fibonacci[Range[20], 2]/2] (* Eric W. Weisstein, Aug 01 2023 *)
    Table[(2 Fibonacci[n + 1, 2] - (-1)^n - 1)/4, {n, 0, 10}]  (* Eric W. Weisstein, Aug 01 2023 *)
    CoefficientList[Series[x/(1 - 2 x - 2 x^2 + 2 x^3 + x^4), {x, 0, 20}], x] (* Eric W. Weisstein, Aug 01 2023 *)
    LinearRecurrence[{2, 2, -2, -1}, {0, 1, 2, 6, 14}, 20] (* Eric W. Weisstein, Aug 01 2023 *)
  • PARI
    my(x='x+O('x^30)); concat([0], Vec(x/((1-x^2)*(1-2*x-x^2)))) \\ G. C. Greubel, Oct 27 2019
    
  • Sage
    def A105635_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P(x/((1-x^2)*(1-2*x-x^2))).list()
    A105635_list(30) # G. C. Greubel, Oct 27 2019
    

Formula

G.f.: x/((1-x^2)*(1-2*x-x^2)).
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4).
a(n) = Sum_{k=0..floor((n-1)/2)} Pell(n-2k).
a(n) = Sum_{k=0..n} Pell(k)*(1-(-1)^(n+k-1))/2.
a(n) = term (4,1) in the 4 X 4 matrix [1,1,0,0; 3,0,1,0; 1,0,0,0; 1,0,0,1]^n. - Alois P. Heinz, Jul 24 2008
a(n) = (A033539(n+3) - A097076(n+3))/2. - Gary Detlefs, Dec 19 2010
a(n) = floor(Pell(n)/2). - Eric W. Weisstein, Aug 01 2023
Showing 1-1 of 1 results.