cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A113224 a(2n) = A002315(n), a(2n+1) = A082639(n+1).

Original entry on oeis.org

1, 2, 7, 16, 41, 98, 239, 576, 1393, 3362, 8119, 19600, 47321, 114242, 275807, 665856, 1607521, 3880898, 9369319, 22619536, 54608393, 131836322, 318281039, 768398400, 1855077841, 4478554082, 10812186007, 26102926096, 63018038201
Offset: 0

Views

Author

Creighton Dement, Oct 18 2005

Keywords

Comments

From Paul D. Hanna, Oct 22 2005: (Start)
The logarithmic derivative of this sequence is twice the g.f. of A113282, where a(2*n) = A113282(2*n), a(4*n+1) = A113282(4*n+1) - 3, a(4*n+3) = A113282(4*n+3) - 1.
Equals the self-convolution of integer sequence A113281. (End)
With an offset of 1, this sequence is the case P1 = 2, P2 = 0, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 19 2015
Floretion Algebra Multiplication Program, FAMP Code: -2ibaseiseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e

Crossrefs

Programs

  • Magma
    [Floor((1+Sqrt(2))^(n+1)/2): n in [0..30]]; // Vincenzo Librandi, Mar 20 2015
  • Mathematica
    a[n_] := n*Sum[ Sum[ Binomial[i, n-k-i]*Binomial[k+i-1, k-1], {i, Ceiling[(n-k)/2], n-k}]*(1-(-1)^k)/(2*k), {k, 1, n}]; Table[a[n], {n, 1, 29}] (* Jean-François Alcover, Feb 26 2013, after Vladimir Kruchinin *)
    CoefficientList[Series[(1 + x^2) / ((x^2 - 1) (x^2 + 2 x - 1)), {x, 0, 30}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{2,2,-2,-1},{1,2,7,16},30] (* Harvey P. Dale, Oct 10 2017 *)
  • Maxima
    a(n):=n*sum(sum(binomial(i,n-k-i)*binomial(k+i-1,k-1),i,ceiling((n-k)/2),n-k)*(1-(-1)^k)/(2*k),k,1,n); /* Vladimir Kruchinin, Apr 11 2011 */
    
  • PARI
    {a(n)=local(x=X+X*O(X^n));polcoeff((1+x^2)/(1-x^2)/(1-2*x-x^2),n,X)} \\ Paul D. Hanna
    

Formula

G.f.: (1+x^2)/((x-1)*(x+1)*(x^2+2*x-1)).
a(n+2) - a(n+1) - a(n) = A100828(n+1).
a(n) = -(u^(n+1)-1)*(v^(n+1)-1)/2 with u = 1+sqrt(2), v = 1-sqrt(2). - Vladeta Jovovic, May 30 2007
a(n) = n * Sum_{k=1..n} Sum_{i=ceiling((n-k)/2)..n-k} binomial(i,n-k-i)*binomial(k+i-1,k-1)*(1-(-1)^k)/(2*k). - Vladimir Kruchinin, Apr 11 2011
a(n) = A001333(n+1) - A000035(n). - R. J. Mathar, Apr 12 2011
a(n) = floor((1+sqrt(2))^(n+1)/2). - Bruno Berselli, Feb 06 2013
From Peter Bala, Mar 19 2015: (Start)
a(n) = (1/2) * A129744(n+1).
exp( Sum_{n >= 1} 2*a(n-1)*x^n/n ) = 1 + 2*Sum_{n >= 1} Pell(n) *x^n. (End)
a(n) = A105635(n-1) + A105635(n+1). - R. J. Mathar, Mar 23 2023

A113225 a(2n) = A011900(n), a(2n+1) = A001109(n+1).

Original entry on oeis.org

1, 1, 3, 6, 15, 35, 85, 204, 493, 1189, 2871, 6930, 16731, 40391, 97513, 235416, 568345, 1372105, 3312555, 7997214, 19306983, 46611179, 112529341, 271669860, 655869061, 1583407981, 3822685023, 9228778026, 22280241075, 53789260175
Offset: 0

Views

Author

Creighton Dement, Oct 18 2005

Keywords

Comments

a(n+1) - a(n) = A097075(n+1), a(n) + a(n+1) = A024537(n+1), a(n+2) - a(n+1) - a(n) = A105635(n+1).
For n >= 1, a(n) is also the edge cover number and edge cut count of the n-Pell graph. - Eric W. Weisstein, Aug 01 2023
Also the independence number, Lovasz number, and Shannon capacity of the n-Pell graph. - Eric W. Weisstein, Aug 01 2023
Floretion Algebra Multiplication Program, FAMP Code: -2jbasejseq[B*C], B = - .5'i + .5'j - .5i' + .5j' - 'kk' - .5'ik' - .5'jk' - .5'ki' - .5'kj'; C = + .5'i + .5i' + .5'ii' + .5e

References

  • C. Dement, Floretion Integer Sequences (work in progress).

Crossrefs

Programs

  • Maple
    seq(iquo(fibonacci(n,2),1)-iquo(fibonacci(n,2),2),n=1..30); # Zerinvary Lajos, Apr 20 2008
    with(combinat):seq(ceil(fibonacci(n,2)/2), n=1..30); # Zerinvary Lajos, Jan 12 2009
  • Mathematica
    Ceiling[Fibonacci[Range[20], 2]/2]
    Table[(1 + (-1)^n + 2 Fibonacci[n + 1, 2])/4, {n, 0, 20}] // Expand
    CoefficientList[Series[-(-1 + x + x^2)/(1 - 2 x - 2 x^2 + 2 x^3 + x^4), {x, 0, 20}], x]
    LinearRecurrence[{2, 2, -2, -1}, {1, 1, 3, 6}, 20]
  • PARI
    {a(n)=local(y); if(n<0, 0, n++; y=x/(x^2+x-1)+x*O(x^n); polcoeff( y/(y^2-1), n))} /* Michael Somos, Sep 09 2006 */

Formula

G.f.: y/(y^2-1) where y=x/(x^2+x-1) if offset=1. - Michael Somos, Sep 09 2006
G.f.: (-1+x+x^2)/((1-x)*(x+1)*(x^2+2*x-1)).
Diagonal sums of A119468. - Paul Barry, May 21 2006
a(n) = (1 + (-1)^n + 2 A000129(n+1))/4. - Eric W. Weisstein, Aug 01 2023
a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4). - Eric W. Weisstein, Aug 01 2023

A111955 a(n) = A078343(n) + (-1)^n.

Original entry on oeis.org

0, 1, 4, 7, 20, 45, 112, 267, 648, 1561, 3772, 9103, 21980, 53061, 128104, 309267, 746640, 1802545, 4351732, 10506007, 25363748, 61233501, 147830752, 356895003, 861620760, 2080136521, 5021893804, 12123924127, 29269742060, 70663408245
Offset: 0

Views

Author

Creighton Dement, Aug 25 2005

Keywords

Comments

This sequence is a companion sequence to A111954 (compare formula / program code). Three other companion sequences (i.e., they are generated by the same floretion given in the program code) are A105635, A097076 and A100828.
Floretion Algebra Multiplication Program, FAMP Code: 4kbasejseq[J*D] with J = - .25'i + .25'j + .5'k - .25i' + .25j' + .5k' - .5'kk' - .25'ik' - .25'jk' - .25'ki' - .25'kj' - .5e and D = + .5'i - .25'j + .25'k + .5i' - .25j' + .25k' - .5'ii' - .25'ij' - .25'ik' - .25'ji' - .25'ki' - .5e. (an initial term 0 was added to the sequence)

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,1},{0,1,4},40] (* Harvey P. Dale, Mar 12 2015 *)

Formula

a(n) + a(n+1) = A048655(n).
a(n) = a(n-1) + 3*a(n-2) + a(n-3), n >= 3; a(n) = (-1/4*sqrt(2)+1)*(1-sqrt(2))^n + (1/4*sqrt(2)+1)*(1+sqrt(2))^n - (-1)^n;
G.f.: -x*(1+3*x) / ( (1+x)*(x^2+2*x-1) ). - R. J. Mathar, Oct 02 2012
E.g.f.: cosh(x) - exp(x)*cosh(sqrt(2)*x) - sinh(x) + 3*exp(x)*sinh(sqrt(2)*x)/sqrt(2). - Stefano Spezia, May 26 2024

A251867 Numbers n such that n^2 + (n+1)^2 is equal to the sum of the hexagonal numbers H(m) and H(m+1) for some m.

Original entry on oeis.org

0, 14, 492, 16730, 568344, 19306982, 655869060, 22280241074, 756872327472, 25711378892990, 873430010034204, 29670908962269962, 1007937474707144520, 34240203231080643734, 1163158972382034742452, 39513164857758100599650, 1342284446191393385645664
Offset: 1

Views

Author

Colin Barker, Dec 10 2014

Keywords

Comments

Also nonnegative integers y in the solutions to 4*x^2-2*y^2+2*x-2*y = 0, the corresponding values of x being A220185.

Examples

			14 is in the sequence because 14^2+15^2 = 196+225 = 421 = 190+231 = H(10)+H(11).
		

Crossrefs

Programs

  • Magma
    I:=[0,14,492]; [n le 3 select I[n] else 35*Self(n-1)-35*Self(n-2)+Self(n-3): n in [1..20]]; // Vincenzo Librandi, Sep 06 2015
  • Mathematica
    LinearRecurrence[{35, -35, 1}, {0, 14, 492}, 20] (* Vincenzo Librandi, Sep 06 2015 *)
  • PARI
    concat(0, Vec(-2*x^2*(x+7)/((x-1)*(x^2-34*x+1)) + O(x^100)))
    

Formula

a(n) = 35*a(n-1)-35*a(n-2)+a(n-3).
G.f.: -2*x^2*(x+7) / ((x-1)*(x^2-34*x+1)).
a(n) = A220185(n) + A001542(n-1)^2. - Alexander Samokrutov, Sep 05 2015
a(n) = (-4+(10+7*sqrt(2))*(17+12*sqrt(2))^(-n)+(10-7*sqrt(2))*(17+12*sqrt(2))^n)/8. - Colin Barker, Mar 02 2016
a(n) = A105635(4*n-4). - Greg Dresden, Aug 30 2021

A157901 Triangle read by rows: A000012 * A157898.

Original entry on oeis.org

1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 3, 6, 10, 8, 8, 3, 9, 16, 24, 16, 16, 4, 12, 28, 40, 56, 32, 32, 4, 16, 40, 80, 96, 128, 64, 64, 5, 20, 60, 120, 216, 224, 288, 128, 128, 5, 25, 80, 200, 336, 560, 512, 640, 256, 256, 6, 30, 110, 280, 616, 896, 1408, 1152, 1408, 512, 512
Offset: 0

Views

Author

Keywords

Comments

Multiplication of the lower triangular matrix A157898 from the left by A000012 means: these are partial column sums of A157898.

Examples

			First few rows of the triangle, n>=0:
  1;
  1,  1;
  2,  2,  2;
  2,  4,  4,   4;
  3,  6, 10,   8,   8;
  3,  9, 16,  24,  16,  16;
  4, 12, 28,  40,  56,  32,  32;
  4, 16, 40,  80,  96, 128,  64,  64;
  5, 20, 60, 120, 216, 224, 288, 128, 128;
  5, 25, 80, 200, 336, 560, 512, 640, 256, 256;
		

Crossrefs

Columns: A004526 (k=0), A002620 (k=1), A006584 (k=2), 4*A096338 (k=3), 8*A177747 (k=4), 16*A299337 (k=5), 32*A178440 (k=6).
Sums include: A105635(n+1) (row), A166486(n+1) (alternating sign diagonal), A232801(n+1) (diagonal).

Programs

  • Magma
    A011782:= func< n | n eq 0 select 1 else 2^(n-1) >;
    function t(n, k) // t = A059576
      if k eq 0 or k eq n then return A011782(n);
      else return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1);
      end if; return t;
    end function;
    A157898:= func< n, k | (&+[(-1)^(n-j)*Binomial(n, j)*t(j, k): j in [k..n]]) >;
    A157071:= func< n,k | (&+[A157898(j+k,k): j in [0..n-k]]) >;
    [A157071(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Aug 27 2025
    
  • Mathematica
    t[n_, k_]:= t[n,k]= If[k==0 || k==n, 2^(n-1) +Boole[n==0]/2, 2*t[n-1,k-1] +2*t[n-1,k] - (2 -Boole[n==2])*t[n-2,k-1]]; (* t = A059576 *)
    A157898[n_, k_]:= A157898[n,k]= Sum[(-1)^(n-j)*Binomial[n,j]*t[j,k], {j,k,n}];
    A157901[n_, k_]:= A157901[n,k]= Sum[A157898[j+k,k], {j,0,n-k}];
    Table[A157901[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Aug 27 2025 *)
  • SageMath
    @CachedFunction
    def t(n, k): # t = A059576
        if (k==0 or k==n): return bool(n==0)/2 + 2^(n-1) # A011782
        else: return 2*t(n-1, k-1) + 2*t(n-1, k) - (2 - 0^(n-2))*t(n-2, k-1)
    def A157898(n, k): return sum((-1)^(n+k-j)*binomial(n, j+k)*t(j+k, k) for j in range(n-k+1))
    def A157071(n,k): return sum(A157898(j+k,k) for j in range(n-k+1))
    print(flatten([[A157071(n,k) for k in range(n+1)] for n in range(10)])) # G. C. Greubel, Aug 27 2025

Formula

T(n,k) = Sum_{j=0..n} A157898(j,k).

Extensions

Edited by the Associate Editors of the OEIS, Apr 10 2009
More terms from G. C. Greubel, Aug 27 2025
Showing 1-5 of 5 results.