cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A177753 G.f.: A(x) = exp( Sum_{n>=1} (n+1)*A177752(n)*x^n/n - x ).

Original entry on oeis.org

1, 1, 2, 11, 140, 3102, 102713, 4698780, 283041208, 21704073515, 2064570182438, 238616651727324, 32939304929679337, 5353248306115060288, 1011770777921642230227, 220048666117424880696401
Offset: 0

Views

Author

Paul D. Hanna, May 16 2010

Keywords

Comments

Let G(x) = g.f. of A177752, then A177752 is defined by:
. A177752(n) = [x^n] G(x)^n/(n+1) for n>1.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 11*x^3 + 140*x^4 + 3102*x^5 +...
Compare the series S(x) = d/dx x^2/Series_Reversion(x*A(x)):
S(x) = 1 + 2*x + 3*x^2 + 28*x^3 + 515*x^4 + 14766*x^5 + 596652*x^6 +...
to the logarithmic derivative:
A'(x)/A(x) = 1 + 3*x + 28*x^2 + 515*x^3 + 14766*x^4 + 596652*x^5 +...
and also to the g.f. G(x) of A177752:
G(x) = 1 + x + x^2 + 7*x^3 + 103*x^4 + 2461*x^5 + 85236*x^6 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x+sum(m=2,n-1,a(m)*x^m));A=(1/x)*serreverse(x^2/intformal(1+x+x*deriv(A)/(A+x*O(x^n))));if(n<0,0,if(n<2,1,polcoeff((n+1)*A,n)))}

Formula

G.f. satisfies: 1+x + x*A'(x)/A(x) = d/dx x^2/Series_Reversion(x*A(x)).
a(n) ~ c * (n!)^2 / sqrt(n), where c = 0.500612869985729164508780668394780439... - Vaclav Kotesovec, Oct 18 2017

A293864 a(0) = a(1) = 1; a(n) = n! * [x^n] (Sum_{k=0..n-1} a(k)*x^k/k!)^n.

Original entry on oeis.org

1, 1, 2, 42, 2472, 295320, 61369920, 20250513360, 9970976453760, 6994020967113600, 6738118625057702400, 8654627604114610272000, 14457770976132703296000000, 30761772133454776218220416000, 81885712959925376996901780172800, 268520193454950330194198952198144000
Offset: 0

Views

Author

Ilya Gutkovskiy, Oct 18 2017

Keywords

Examples

			E.g.f. A(x) = 1 + x + 2*x^2/2! + 42*x^3/3! + 2472*x^4/4! + 295320*x^5/5! + 61369920*x^6/6! + ...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := a[n] = n! SeriesCoefficient[Sum[a[k] x^k/k!, {k, 0, n - 1}]^n, {x, 0, n}]; a[0] = 1; a[1] = 1; Table[a[n], {n, 0, 15}]

Formula

From Vaclav Kotesovec, Oct 18 2017: (Start)
a(n) ~ c * n!^3/sqrt(n), where c = 0.500612869985729164508780668394780439268735...
a(n) ~ c * n^(3*n+1)/exp(3*n), where c = 7.884457436083884678947729926892032034...
(End)
Showing 1-2 of 2 results.