cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177754 Partial sums of A047994.

Original entry on oeis.org

1, 2, 4, 7, 11, 13, 19, 26, 34, 38, 48, 54, 66, 72, 80, 95, 111, 119, 137, 149, 161, 171, 193, 207, 231, 243, 269, 287, 315, 323, 353, 384, 404, 420, 444, 468, 504, 522, 546, 574, 614, 626, 668, 698, 730, 752, 798, 828, 876, 900, 932, 968, 1020, 1046, 1086
Offset: 1

Views

Author

Jonathan Vos Post, May 12 2010

Keywords

Comments

Partial sums of unitary totient (or unitary phi) function uphi(n). This is to A047994 as A002088 is to A000010. The subsequence of primes in the partial sum begins: 2, 7, 11, 13, 19, 137, 149, 193, 269, 353, 1523, 1543, 1609, 1657.

Examples

			a(7) = 1 + 1 + 2 + 3 + 4 + 2 + 6 = 19.
		

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); s = 0; Accumulate[Array[uphi, 60]] (* Amiram Eldar, Dec 18 2018*)

Formula

a(n) = Sum_{i=1..n} A047994(i).
a(n) ~ alpha * n^2/2 + O(n*log^2(n)) where alpha = Product_{p prime} (1 - 1/(p*(p+1))) = 0.704442... (A065463). - Amiram Eldar, Dec 18 2018