cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A306950 Numbers m that divide A177754(m) = Sum_{k=1..m} uphi(k), where uphi is the unitary totient function (A047994).

Original entry on oeis.org

1, 2, 32, 36, 39, 50, 62, 147, 169, 190, 203, 467, 1035, 1075, 2174, 2475, 27047, 28097, 91087, 181175, 215795, 539654, 580160, 668988, 868879, 2611450, 14359486, 118119399, 1030191204, 1109928219, 2362155122
Offset: 1

Views

Author

Amiram Eldar, Mar 17 2019

Keywords

Comments

The unitary version of A048290.

Examples

			32 is in the sequence since A177754(32) = 384 = 32 * 12 is divisible by 32.
		

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Product[{p, e} = pe; p^e-1, {pe, FactorInteger[n]}]; seq={}; s = 0; Do[s = s + uphi[n]; If[Divisible[s,n], AppendTo[seq, n]], {n, 1, 10^6}]; seq (* after Jean-François Alcover at A047994 *)

A370899 Partial alternating sums of the unitary totient function (A047994).

Original entry on oeis.org

1, 0, 2, -1, 3, 1, 7, 0, 8, 4, 14, 8, 20, 14, 22, 7, 23, 15, 33, 21, 33, 23, 45, 31, 55, 43, 69, 51, 79, 71, 101, 70, 90, 74, 98, 74, 110, 92, 116, 88, 128, 116, 158, 128, 160, 138, 184, 154, 202, 178, 210, 174, 226, 200, 240, 198, 234, 206, 264, 240, 300, 270
Offset: 1

Views

Author

Amiram Eldar, Mar 05 2024

Keywords

Crossrefs

Similar sequences: A068762, A068773, A307704, A357817, A362028.

Programs

  • Mathematica
    uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Accumulate[Array[(-1)^(# + 1) * uphi[#] &, 100]]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2] - 1);}
    lista(kmax) = {my(s = 0); for(k = 1, kmax, s += (-1)^(k+1) * uphi(k); print1(s, ", "))};

Formula

a(n) = Sum_{k=1..n} (-1)^(k+1) * A047994(k).
a(n) = c * n^2 + O(n * log(n)^(5/3) * log(log(n))^(4/3)), where c = A065463 / 10 = 0.07044422... (Tóth, 2017).

A306070 Partial sums of A116550: Sum_{k=1..n} bphi(k) where bphi(k) is the bi-unitary analog of Euler's totient function.

Original entry on oeis.org

1, 2, 4, 7, 11, 14, 20, 27, 35, 41, 51, 59, 71, 80, 89, 104, 120, 132, 150, 164, 178, 193, 215, 232, 256, 274, 300, 321, 349, 364, 394, 425, 448, 472, 497, 526, 562, 589, 617, 648, 688, 709, 751, 786, 820, 853, 899, 935, 983, 1019, 1056, 1098, 1150, 1189
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2018

Keywords

Comments

The bi-unitary version of A002088 and A177754.

Crossrefs

Programs

  • Mathematica
    bphi[1] = 1; bphi[n_] := With[{pp = Power @@@ FactorInteger[n]}, Count[Range[n], m_ /; Intersection[pp, Power @@@ FactorInteger[m]] == {}]]; Accumulate[Table[bphi[n], {n, 1, 100}]] (* after Jean-François Alcover at A116550 *)
    phi[x_, n_] := DivisorSum[n, MoebiusMu[#]*Floor[x/#] &]; bphi[n_] := DivisorSum[n, (-1)^PrimeNu[#]*phi[n/#, #] &, CoprimeQ[#, n/#] &]; Accumulate[Array[bphi, 100]] (* Amiram Eldar, Jun 30 2025 *)
  • PARI
    udivs(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d); }
    gcud(n, m) = vecmax(setintersect(udivs(n), udivs(m)));
    bphi(n) = if (n==1, 1, sum(k=1, n-1, gcud(n, k) == 1));
    a(n) = sum(k=1, n, bphi(k)); \\ Michel Marcus, Jun 20 2018

Formula

a(n) = A*n^2/2 + O(n*log(n)^2), where A = A306071.

A379517 Numerators of the partial sums of the reciprocals of the unitary totient function (A047994).

Original entry on oeis.org

1, 2, 5, 17, 37, 43, 15, 109, 225, 239, 1223, 3809, 1293, 4019, 1031, 209, 1693, 1735, 5261, 5345, 5429, 27649, 306659, 310619, 312929, 317549, 4155857, 4195897, 603091, 615961, 619393, 19304143, 19463731, 1228951, 9898103, 4982299, 1251116, 2524397, 10164083
Offset: 1

Views

Author

Amiram Eldar, Dec 24 2024

Keywords

Examples

			Fractions begin with 1, 2, 5/2, 17/6, 37/12, 43/12, 15/4, 109/28, 225/56, 239/56, 1223/280, 3809/840, ...
		

Crossrefs

Programs

  • Mathematica
    uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Numerator[Accumulate[Table[1/uphi[n], {n, 1, 50}]]]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / uphi(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A047994(k)).
a(n)/A379518(n) = L * log(n) + M + O(log(n)^(5/3)/n), where L = A327837, M = L * (gamma - B + A1 + A2), gamma = A001620, B = Sum_{p prime} (1-1/p) * log(p) * Sum_{k>=1} k/(p^k*(p^k-1)) / A(p), A1 = Sum_{p prime} log(p)/(p^2*(p-1)*A(p)), A2 = Sum_{p prime} ((A*(p)(p)*log(p)/p^2), A(p) = 1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1)), and A*(p) = Sum_{k>=1} 1/(p^k*p^(k+1)-1)*A(p)) (Sita Ramaiah and Suryanarayana, 1980).

A379518 Denominators of the partial sums of the reciprocals of the unitary totient function (A047994).

Original entry on oeis.org

1, 1, 2, 6, 12, 12, 4, 28, 56, 56, 280, 840, 280, 840, 210, 42, 336, 336, 1008, 1008, 1008, 5040, 55440, 55440, 55440, 55440, 720720, 720720, 102960, 102960, 102960, 3191760, 3191760, 199485, 1595880, 797940, 199485, 398970, 1595880, 11171160, 1117116, 279279
Offset: 1

Views

Author

Amiram Eldar, Dec 24 2024

Keywords

Crossrefs

Cf. A047994, A177754, A370899, A379517 (numerators), A379520.

Programs

  • Mathematica
    uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Denominator[Accumulate[Table[1/uphi[n], {n, 1, 50}]]]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / uphi(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A047994(k)).

A379519 Numerators of the partial alternating sums of the reciprocals of the unitary totient function (A047994).

Original entry on oeis.org

1, 0, 1, 1, 5, -1, 1, -5, 11, -31, -71, -211, -47, -281, -22, -29, -359, -569, -1427, -1847, -1427, -1931, -18721, -22681, -20371, -24991, -297163, -37467, -34607, -44617, -125843, -4141373, -3769001, -2117233, -327013, -2117233, -6041389, -6662009, -774568, -3297757
Offset: 1

Views

Author

Amiram Eldar, Dec 24 2024

Keywords

Examples

			Fractions begin with 1, 0, 1/2, 1/6, 5/12, -1/12, 1/12, -5/84, 11/168, -31/168, -71/840, -211/840, ...
		

Crossrefs

Programs

  • Mathematica
    uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Numerator[Accumulate[Table[(-1)^(n+1)/uphi[n], {n, 1, 50}]]]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / uphi(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A047994(k)).
a(n)/A379520(n) = T * log(n) + U + O(log(n)^(5/3) / n^u), where u > 0, T = A327837 * (2/(A065442 + 1) - 1), and U is a constant.

A379520 Denominators of the partial alternating sums of the reciprocals of the unitary totient function (A047994).

Original entry on oeis.org

1, 1, 2, 6, 12, 12, 12, 84, 168, 168, 840, 840, 280, 840, 105, 105, 1680, 1680, 5040, 5040, 5040, 5040, 55440, 55440, 55440, 55440, 720720, 80080, 80080, 80080, 240240, 7447440, 7447440, 3723720, 620620, 3723720, 11171160, 11171160, 1396395, 5585580, 2234232, 2234232
Offset: 1

Views

Author

Amiram Eldar, Dec 24 2024

Keywords

Crossrefs

Cf. A047994, A177754, A370899, A379518, A379519 (numerators).

Programs

  • Mathematica
    uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Denominator[Accumulate[Table[(-1)^(n+1)/uphi[n], {n, 1, 50}]]]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / uphi(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A047994(k)).

A327572 Partial sums of an infinitary analog of Euler's phi function: a(n) = Sum_{k=1..n} iphi(k), where iphi is A091732.

Original entry on oeis.org

1, 2, 4, 7, 11, 13, 19, 22, 30, 34, 44, 50, 62, 68, 76, 91, 107, 115, 133, 145, 157, 167, 189, 195, 219, 231, 247, 265, 293, 301, 331, 346, 366, 382, 406, 430, 466, 484, 508, 520, 560, 572, 614, 644, 676, 698, 744, 774, 822, 846, 878, 914, 966, 982, 1022, 1040
Offset: 1

Views

Author

Amiram Eldar, Sep 17 2019

Keywords

References

  • Steven R. Finch, Mathematical Constants II, Cambridge University Press, 2018, section 1.7.5, pp. 53-54.

Crossrefs

Cf. A091732 (iphi), A327575.
Cf. A002088 (sums of phi), A177754 (unitary), A306070 (bi-unitary).

Programs

  • Mathematica
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); iphi[1] = 1; iphi[n] := Times @@ (Flatten @ (f @@@ FactorInteger[n]) - 1); Accumulate[Array[iphi, 52]]

Formula

a(n) ~ c * n^2, where c = 0.328935... (A327575).

A321613 Partial products of the unitary totient function (A047994): a(n) = Product_{k=1..n} uphi(k).

Original entry on oeis.org

1, 1, 2, 6, 24, 48, 288, 2016, 16128, 64512, 645120, 3870720, 46448640, 278691840, 2229534720, 33443020800, 535088332800, 4280706662400, 77052719923200, 924632639078400, 11095591668940800, 110955916689408000, 2441030167166976000, 34174422340337664000
Offset: 1

Views

Author

Amiram Eldar, Dec 19 2018

Keywords

Comments

a(n) is also the determinant of the symmetric n X n matrix M defined by M(i,j) = ugcd(i,j) for 1 <= i,j <= n, where ugcd(i,j) in the greatest common unitary divisor of i and j (A165430).
The unitary version of A001088.

Examples

			a(4) = uphi(1) * uphi(2) * uphi(3) * uphi(4) = 1 * 1 * 2 * 3 = 6.
		

Crossrefs

Programs

  • Mathematica
    uphi[1] = 1; uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); FoldList[ Times, uphi /@ Range[50]]
  • PARI
    uphi(n) = my(f=factor(n)~); prod(i=1, #f, f[1, i]^f[2, i]-1); \\ A047994
    a(n) = prod(k=1, n, uphi(k)); \\ Michel Marcus, Dec 19 2018
Showing 1-9 of 9 results.