cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A379517 Numerators of the partial sums of the reciprocals of the unitary totient function (A047994).

Original entry on oeis.org

1, 2, 5, 17, 37, 43, 15, 109, 225, 239, 1223, 3809, 1293, 4019, 1031, 209, 1693, 1735, 5261, 5345, 5429, 27649, 306659, 310619, 312929, 317549, 4155857, 4195897, 603091, 615961, 619393, 19304143, 19463731, 1228951, 9898103, 4982299, 1251116, 2524397, 10164083
Offset: 1

Views

Author

Amiram Eldar, Dec 24 2024

Keywords

Examples

			Fractions begin with 1, 2, 5/2, 17/6, 37/12, 43/12, 15/4, 109/28, 225/56, 239/56, 1223/280, 3809/840, ...
		

Crossrefs

Programs

  • Mathematica
    uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Numerator[Accumulate[Table[1/uphi[n], {n, 1, 50}]]]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / uphi(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} 1/A047994(k)).
a(n)/A379518(n) = L * log(n) + M + O(log(n)^(5/3)/n), where L = A327837, M = L * (gamma - B + A1 + A2), gamma = A001620, B = Sum_{p prime} (1-1/p) * log(p) * Sum_{k>=1} k/(p^k*(p^k-1)) / A(p), A1 = Sum_{p prime} log(p)/(p^2*(p-1)*A(p)), A2 = Sum_{p prime} ((A*(p)(p)*log(p)/p^2), A(p) = 1 + (1-1/p) * Sum_{k>=1} 1/(p^k*(p^k-1)), and A*(p) = Sum_{k>=1} 1/(p^k*p^(k+1)-1)*A(p)) (Sita Ramaiah and Suryanarayana, 1980).

A379518 Denominators of the partial sums of the reciprocals of the unitary totient function (A047994).

Original entry on oeis.org

1, 1, 2, 6, 12, 12, 4, 28, 56, 56, 280, 840, 280, 840, 210, 42, 336, 336, 1008, 1008, 1008, 5040, 55440, 55440, 55440, 55440, 720720, 720720, 102960, 102960, 102960, 3191760, 3191760, 199485, 1595880, 797940, 199485, 398970, 1595880, 11171160, 1117116, 279279
Offset: 1

Views

Author

Amiram Eldar, Dec 24 2024

Keywords

Crossrefs

Cf. A047994, A177754, A370899, A379517 (numerators), A379520.

Programs

  • Mathematica
    uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Denominator[Accumulate[Table[1/uphi[n], {n, 1, 50}]]]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / uphi(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} 1/A047994(k)).

A379519 Numerators of the partial alternating sums of the reciprocals of the unitary totient function (A047994).

Original entry on oeis.org

1, 0, 1, 1, 5, -1, 1, -5, 11, -31, -71, -211, -47, -281, -22, -29, -359, -569, -1427, -1847, -1427, -1931, -18721, -22681, -20371, -24991, -297163, -37467, -34607, -44617, -125843, -4141373, -3769001, -2117233, -327013, -2117233, -6041389, -6662009, -774568, -3297757
Offset: 1

Views

Author

Amiram Eldar, Dec 24 2024

Keywords

Examples

			Fractions begin with 1, 0, 1/2, 1/6, 5/12, -1/12, 1/12, -5/84, 11/168, -31/168, -71/840, -211/840, ...
		

Crossrefs

Programs

  • Mathematica
    uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Numerator[Accumulate[Table[(-1)^(n+1)/uphi[n], {n, 1, 50}]]]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / uphi(k); print1(numerator(s), ", "))};

Formula

a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A047994(k)).
a(n)/A379520(n) = T * log(n) + U + O(log(n)^(5/3) / n^u), where u > 0, T = A327837 * (2/(A065442 + 1) - 1), and U is a constant.

A379520 Denominators of the partial alternating sums of the reciprocals of the unitary totient function (A047994).

Original entry on oeis.org

1, 1, 2, 6, 12, 12, 12, 84, 168, 168, 840, 840, 280, 840, 105, 105, 1680, 1680, 5040, 5040, 5040, 5040, 55440, 55440, 55440, 55440, 720720, 80080, 80080, 80080, 240240, 7447440, 7447440, 3723720, 620620, 3723720, 11171160, 11171160, 1396395, 5585580, 2234232, 2234232
Offset: 1

Views

Author

Amiram Eldar, Dec 24 2024

Keywords

Crossrefs

Cf. A047994, A177754, A370899, A379518, A379519 (numerators).

Programs

  • Mathematica
    uphi[n_] := Times @@ (-1 + Power @@@ FactorInteger[n]); uphi[1] = 1; Denominator[Accumulate[Table[(-1)^(n+1)/uphi[n], {n, 1, 50}]]]
  • PARI
    uphi(n) = {my(f = factor(n)); prod(i = 1, #f~, -1 + f[i, 1]^f[i, 2]);}
    list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / uphi(k); print1(denominator(s), ", "))};

Formula

a(n) = denominator(Sum_{k=1..n} (-1)^(k+1)/A047994(k)).
Showing 1-4 of 4 results.