cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A177757 Number of ways to place 4 nonattacking bishops on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 64, 600, 6912, 29400, 132864, 381024, 1139200, 2613600, 6177600, 12269400, 24912384, 44717400, 81636352, 135945600, 229423104, 360561024, 572788800, 859685400, 1301766400, 1881864600, 2740725504, 3840540000
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 8 x^3 (3 x^11 + 122 x^10 + 401 x^9 + 2508 x^8 + 3316 x^7 + 7780 x^6 + 5172 x^5 + 5236 x^4 + 1609 x^3 + 666 x^2 + 59 x + 8)/((x -  1)^9 (x + 1)^7), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
    LinearRecurrence[{2,6,-14,-14,42,14,-70,0,70,-14,-42,14,14,-6,-2,1},{0,0,0,64,600,6912,29400,132864,381024,1139200,2613600,6177600,12269400,24912384,44717400,81636352},50] (* Harvey P. Dale, Nov 05 2016 *)

Formula

a(n) = 1/48*(n-2)^2*n^2*(2n^4 -16n^3 +50n^2 -84n +81 +(6n^2 -36n +63)*(-1)^n).
G.f.: -8x^4*(3x^11 +122x^10 +401x^9 +2508x^8 +3316x^7 +7780x^6 +5172x^5 +5236x^4 +1609x^3 +666x^2 +59x+8)/((x-1)^9*(x+1)^7).

A177758 Number of ways to place 5 nonattacking bishops on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 120, 6912, 52920, 466944, 1905120, 8647680, 25613280, 81838080, 198764280, 510478080, 1082161080, 2393997312, 4594961280, 9120190464, 16225246080, 29656350720, 49689816120, 85128088320, 135870624120
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 24 x^4 (5 x^14 + 406 x^13 + 1333 x^12 + 14880 x^11 + 24307 x^10 + 97498 x^9 + 95187 x^8 + 175328 x^7 + 100307 x^6 + 93018 x^5 + 28147 x^4 + 12832 x^3 + 1589 x^2 + 278 x + 5) / ((x - 1)^11 (x + 1)^9), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)

Formula

Explicit formula: 1/240*(n-4)^2*(n-2)^2*n^2*(2n^4 -16n^3 +54n^2 -108n+153 +(10n^2 -60n +135)*(-1)^n).
G.f.: -24x^5*(5x^14 +406x^13 +1333x^12 +14880x^11 +24307x^10 +97498x^9 +95187x^8 +175328x^7 +100307x^6 +93018x^5 +28147x^4 +12832x^3 +1589x^2 +278x+5)/((x-1)^11*(x+1)^9).

A177759 Number of ways to place 6 nonattacking bishops on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 2304, 35280, 811008, 5080320, 38784000, 153679680, 699678720, 2120152320, 7113012480, 18036018000, 49416536064, 110279070720, 261526745088, 530024705280, 1128038400000
Offset: 1

Views

Author

Vaclav Kotesovec, May 13 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 48 x^5 * (15 x^17 + 2386 x^16 + 6778 x^15 + 133898 x^14 + 235216 x^13 + 1520054 x^12 + 1844806 x^11 + 5402462 x^10 + 4378450 x^9 + 6819710 x^8 + 3509350 x^7 + 3079094 x^6 + 926032 x^5 + 445642 x^4 + 65754 x^3 + 14946 x^2 + 639 x + 48) / ((x - 1)^13  (x+1)^11), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)
    LinearRecurrence[{2,10,-22,-44,110,110,-330,-165,660,132,-924,0,924,-132,-660,165,330,-110,-110,44,22,-10,-2,1},{0,0,0,0,0,2304,35280,811008,5080320,38784000,153679680,699678720,2120152320,7113012480,18036018000,49416536064,110279070720,261526745088,530024705280,1128038400000,2120098821120,4148067559680,7337013702480,13421018603520},30] (* Harvey P. Dale, Aug 20 2024 *)

Formula

Explicit formula: 1/1440*(n-4)^2*(n-2)^2*n^2*(2*n^6 -36*n^5 +269*n^4 -1128*n^3 +3143*n^2-6330*n +7425 +(15*n^4 -240*n^3 +1545*n^2 -4950*n +6975)*(-1)^n).
G.f.: -48*x^6*(15*x^17 +2386*x^16 +6778*x^15 +133898*x^14 +235216*x^13 +1520054*x^12 +1844806*x^11 +5402462*x^10+4378450*x^9 +6819710*x^8 +3509350*x^7 +3079094*x^6+926032*x^5 +445642*x^4 +65754*x^3 +14946*x^2 +639*x+48)/((x-1)^13*(x+1)^11).

A178140 Number of ways to place 7 nonattacking bishops on an n X n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 5040, 589824, 6531840, 98304000, 548856000, 3822059520, 14841066240, 67711795200, 208702494000, 726855843840, 1906252508160, 5500708061184, 12796310741760, 32142458880000, 68146033536000
Offset: 1

Views

Author

Vaclav Kotesovec, May 21 2010

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 48 x^6 (105 x^20 + 32558 x^19 + 69284 x^18 + 2532234 x^17 + 4270573 x^16 + 43976860 x^15 + 59687712 x^14 + 262529316 x^13 + 264238506 x^12 + 619225992 x^11 + 438942840 x^10 + 606753672 x^9 + 289183146 x^8 + 243462436 x^7 + 72876832 x^6 + 36501660 x^5 + 6031853 x^4 + 1631114 x^3 + 110244 x^2 + 12078 x + 105) / ((x - 1)^15 (x + 1)^13), {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)

Formula

Explicit formula (Vaclav Kotesovec, May 21 2010): (1/10080)*(n-6)^2*(n-4)^2*(n-2)^2*(n^2) * (2*n^6 -36*n^5 +275*n^4 -1224*n^3 +3887*n^2 -9570*n +14625 +(21*n^4 -336*n^3 +2289*n^2 -8190*n +14175)*(-1)^n).
G.f.: -48*x^7 * (105*x^20 +32558*x^19 +69284*x^18 +2532234*x^17 +4270573*x^16 +43976860*x^15 +59687712*x^14 +262529316*x^13 +264238506*x^12 +619225992*x^11 +438942840*x^10 +606753672*x^9 +289183146*x^8 +243462436*x^7 +72876832*x^6 +36501660*x^5 +6031853*x^4 +1631114*x^3 +110244*x^2 +12078*x +105) / ((x-1)^15*(x+1)^13).

A189789 Number of ways to place 8 nonattacking bishops on an n x n toroidal board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 147456, 3265920, 129024000, 1097712000, 12939264000, 66784798080, 436483031040, 1669619952000, 7629571031040, 23828156352000, 85476013572096, 230333593351680, 693478195200000, 1669577821632000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 27 2011

Keywords

Crossrefs

Programs

  • Mathematica
    (* Number of ways to place k nonattacking bishops on an n x n toroidal board *)
    tbishops[k_,n_]:=If[EvenQ[n],2^k*k!*Sum[Binomial[n/2,i]^2*Binomial[n/2,k-i]^2/Binomial[k,i],{i,0,k}],k!*Binomial[n,k]^2];
    Table[tbishops[8,n],{n,1,20}] (* using k=8 for this sequence *)

Formula

a(n) = (1/80640) * (n-6)^2 * (n-4)^2 * (n-2)^2 * n^2 * (2*n^8 - 64*n^7 + 884*n^6 - 7048*n^5 + 37382*n^4 - 147904*n^3 + 468540*n^2 - 1108800*n + 1422225 + (28*n^6 - 840*n^5 + 10906*n^4 - 80640*n^3 + 370468*n^2 - 1034880*n + 1400175) * (-1)^n)
G.f.: 1152x^8*(35x^23 + 21178x^22 + 27889x^21 + 2133348x^20 + 3081175x^19 + 51948910x^18 + 72476645x^17 + 469213640x^16 + 538879520x^15 + 1803221880x^14 + 1580004720x^13 + 3146148264x^12 + 2014875632x^11 + 2544618104x^10 + 1144092320x^9 + 933224520x^8 + 278242005x^7 + 143723790x^6 + 25756935x^5 + 7854820x^4 + 693025x^3 + 104538x^2 + 2579x + 128) / ((1-x)^17*(x+1)^15)
Showing 1-5 of 5 results.