cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177793 Partial sums of A054247.

Original entry on oeis.org

1, 3, 9, 111, 8659, 4220403, 8594777715, 70377477369459, 2305913405481561715, 302233760834929839713907, 158456627262298939528655810163, 332307157402856267706609817833582195
Offset: 0

Views

Author

Jonathan Vos Post, May 13 2010

Keywords

Comments

Partial sums of number of n X n binary matrices under action of dihedral group of the square D_4. Can this ever be prime?

Examples

			a(4) = 1 + 2 + 6 + 102 + 8548 = 8659 = 7 * 1237.
		

Crossrefs

Programs

  • PARI
    A054247(n)={ local(a) ; if(n%2==0, a=2^(n^2)+2*2^(n^2/4)+3*2^(n^2/2)+2*2^((n^2+n)/2), a=2^(n^2)+2*2^((n^2+3)/4)+2^((n^2+1)/2)+4*2^((n^2+n)/2); ) ; return(a/8) ; }
    A177793(n)={ return(sum(i=0,n,A054247(i))) ; }
    { for(n=0,20, print1(A177793(n),",") ; ) ; } (End)

Formula

a(n) = SUM[i=0..n] A054247(i) = SUM[i=0..n] [(1/8)*(2^(i^2)+2*2^(i^2/4)+3*2^(i^2/2)+2*2^((i^2+i)/2)) if i is even and (1/8)*(2^(i^2)+2*2^((i^2+3)/4)+2^((i^2+1)/2)+4*2^((i^2+i)/2)) if i is odd].

Extensions

Extended by R. J. Mathar, May 28 2010