A177844 a(n) = 6*a(n-1)-8*a(n-2) for n > 3; a(0)=279, a(1)=3996, a(2)=16008, a(3)=64784.
279, 3996, 16008, 64784, 260640, 1045568, 4188288, 16765184, 67084800, 268387328, 1073645568, 4294774784, 17179484160, 68718706688, 274876366848, 1099508547584, 4398040350720, 17592173723648, 70368719536128
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (6, -8).
Programs
-
Magma
[279, 3996] cat [4^(n+5)-47*2^(n+1): n in [2..25]]; // Vincenzo Librandi, Sep 24 2013
-
Mathematica
CoefficientList[Series[(279 + 2322 x - 5736 x^2 + 704 x^3)/((1 - 2 x) (1 - 4 x)), {x, 0, 40}], x] (* Vincenzo Librandi, Sep 24 2013 *)
-
PARI
{m=19; v=concat([279, 3996, 16008, 64784], vector(m-4)); for(n=5, m, v[n]=6*v[n-1]-8*v[n-2]); v}
Formula
a(n) = 4^(n+5)-47*2^(n+1) for n > 1.
G.f.: (279+2322*x-5736*x^2+704*x^3) / ((1-2*x)*(1-4*x)).
G.f. for the sequence starting at a(2): 8*x^2*(2001-3908*x)/((1-2*x)*(1-4*x)).
Comments