A177848 Triangle, read by rows, T(n, k) = t(k, n-k+1) - t(1, n) + 1 where t(n, m) = (n*m)!*Beta(n, m).
1, 1, 1, 1, 3, 1, 1, 55, 55, 1, 1, 1993, 12073, 1993, 1, 1, 120841, 7983241, 7983241, 120841, 1, 1, 11404081, 12454040881, 149448498481, 12454040881, 11404081, 1, 1, 1556750161, 38109367290961, 8688935743482961, 8688935743482961, 38109367290961, 1556750161, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 3, 1; 1, 55, 55, 1; 1, 1993, 12073, 1993, 1; 1, 120841, 7983241, 7983241, 120841, 1; 1, 11404081, 12454040881, 149448498481, 12454040881, 11404081, 1;
Links
- G. C. Greubel, Rows n = 1..30 of the triangle, flattened
Crossrefs
Cf. A060854.
Programs
-
Mathematica
t[n_, k_]:= (n*k)!*Beta[n, k]; Table[t[k, n-k+1] - t[1, n] + 1, {n, 12}, {k, n}]//Flatten
-
Sage
def t(n, k): return factorial(n*k)*beta(n, k) flatten([[t(k, n-k+1) - t(1,n) + 1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 06 2021
Formula
Let t(n, k) = (n*k)!*Beta(n, k) then T(n, k) = t(k, n-k+1) - t(1, n) + 1.
Extensions
Edited by G. C. Greubel, Feb 06 2021
Comments