cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A177848 Triangle, read by rows, T(n, k) = t(k, n-k+1) - t(1, n) + 1 where t(n, m) = (n*m)!*Beta(n, m).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 55, 55, 1, 1, 1993, 12073, 1993, 1, 1, 120841, 7983241, 7983241, 120841, 1, 1, 11404081, 12454040881, 149448498481, 12454040881, 11404081, 1, 1, 1556750161, 38109367290961, 8688935743482961, 8688935743482961, 38109367290961, 1556750161, 1
Offset: 1

Views

Author

Roger L. Bagula, May 14 2010

Keywords

Comments

Row sums are {1, 2, 5, 112, 16061, 16208166, 174379388407, 17454093335048168, 27083470639271574245769, 421762213493139881153379087370, ...}.

Examples

			Triangle begins as:
  1;
  1,        1;
  1,        3,           1;
  1,       55,          55,            1;
  1,     1993,       12073,         1993,           1;
  1,   120841,     7983241,      7983241,      120841,        1;
  1, 11404081, 12454040881, 149448498481, 12454040881, 11404081, 1;
		

Crossrefs

Cf. A060854.

Programs

  • Mathematica
    t[n_, k_]:= (n*k)!*Beta[n, k];
    Table[t[k, n-k+1] - t[1, n] + 1, {n, 12}, {k, n}]//Flatten
  • Sage
    def t(n, k): return factorial(n*k)*beta(n, k)
    flatten([[t(k, n-k+1) - t(1,n) + 1 for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 06 2021

Formula

Let t(n, k) = (n*k)!*Beta(n, k) then T(n, k) = t(k, n-k+1) - t(1, n) + 1.

Extensions

Edited by G. C. Greubel, Feb 06 2021