A177928 Let n be the number whose square n^2 has the decimal expansion { d(1) d(2) ... d(D) }, and let q be the corresponding number whose decimal expansion is { d(2) d(3) ... d(D) d(1)}. Sequence lists numbers n dividing q.
1, 2, 3, 9, 27, 33, 66, 99, 123, 246, 271, 333, 351, 407, 429, 462, 481, 518, 546, 567, 666, 693, 702, 715, 777, 814, 819, 924, 936, 999, 1434, 2151, 2868, 3333, 4521, 4818, 6666, 7227, 7373, 7535, 8631, 9042, 9999, 33333, 53658, 54546, 66666, 80487, 81819
Offset: 1
Examples
429 is in the sequence because 429^2 = 184041 and 840411/429 = 1959.
Links
- Eric Weisstein's World of Mathematics, Repunits
Programs
-
Maple
for n from 1 to 10^6 do: d:=convert(n^2, base, 10):n1:=nops(d):s:=sum('d[i]*10^i','i'=1..n1-1)+d[n1]:if irem(s,n)=0 then printf(`%d, `,n):else fi:od:
-
Mathematica
Select[Range[100000], Mod[FromDigits[RotateLeft[IntegerDigits[#^2]]], #] == 0 &] (* T. D. Noe, Jul 27 2012 *)
Comments