A177947 A symmetrical triangle sequence based on the beta function inverse and the spotlight tile A051601 as antidiagonal: t(n,m) = 1/Integrate[(-1 + t)^n/t^(m + n + 2), {t, 1, Infinity}] - (-2 Binomial[m + n, m] + Binomial[2 + m + n, 1 + m]).
1, 1, 1, 1, 4, 1, 1, 8, 8, 1, 1, 13, 22, 13, 1, 1, 19, 45, 45, 19, 1, 1, 26, 79, 110, 79, 26, 1, 1, 34, 126, 224, 224, 126, 34, 1, 1, 43, 188, 406, 518, 406, 188, 43, 1, 1, 53, 267, 678, 1050, 1050, 678, 267, 53, 1
Offset: 0
Examples
{1}, {1, 1}, {1, 4, 1}, {1, 8, 8, 1}, {1, 13, 22, 13, 1}, {1, 19, 45, 45, 19, 1}, {1, 26, 79, 110, 79, 26, 1}, {1, 34, 126, 224, 224, 126, 34, 1}, {1, 43, 188, 406, 518, 406, 188, 43, 1}, {1, 53, 267, 678, 1050, 1050, 678, 267, 53, 1}
Programs
-
Mathematica
Clear[t, n] t[n_, m_] = 1/Integrate[(-1 + t)^n/t^(m + n + 2), {t, 1, Infinity}] - (-2 Binomial[m + n, m] + Binomial[2 + m + n, 1 + m]); a = Table[Table[t[n, m], {n, 0, 10}], {m, 0, 10}]; Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]; Flatten[%]
Comments