A177976 Square array T(n,k) read by antidiagonals up. Cumulative column sums of A177975.
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 8, 4, 1, 1, 10, 15, 13, 5, 1, 1, 12, 29, 29, 19, 6, 1, 1, 18, 42, 63, 49, 26, 7, 1, 1, 22, 69, 106, 118, 76, 34, 8, 1, 1, 28, 95, 189, 225, 201, 111, 43, 9, 1, 1, 32, 134, 289, 434, 427, 320, 155, 53, 10, 1, 1, 42, 172, 444, 729, 888, 748, 484, 209, 64, 11, 1
Offset: 1
Examples
Table begins: 1..1...1....1.....1.....1......1......1.......1.......1.......1 1..2...3....4.....5.....6......7......8.......9......10......11 1..4...8...13....19....26.....34.....43......53......64......76 1..6..15...29....49....76....111....155.....209.....274.....351 1.10..29...63...118...201....320....484.....703.....988....1351 1.12..42..106...225...427....748...1233....1937....2926....4278 1.18..69..189...434...888...1671...2948....4939....7930...12285 1.22..95..289...729..1624...3303...6260...11209...19150...31447 1.28.134..444..1209..2890...6278..12659...24034...43405...75139 1.32.172..626..1850..4761..11067..23762...47841...91301..166506 1.42.237..911..2850..7763..19074..43209...91598..183678..351261 1.46.287.1203..4059.11829..30911..74129..165737..349426..700699 1.58.377.1657..5878.18016..49474.124516..291706..643355.1347344 1.64.452.2130..8044.26117..75676.200313..492185.1135761.2483392 1.72.552.2766.11020.37599.114199.316228..811416.1952182.4443582 1.80.652.3462.14566.52311.166747.483340.1295295.3248246.7692894
Links
- Seiichi Manyama, Antidiagonals n = 1..140, flattened
Crossrefs
Programs
-
PARI
T(n, k) = sum(j=1, n, sumdiv(j, d, moebius(j/d)*binomial(d+k-2, d-1))); \\ Seiichi Manyama, Jun 12 2021
-
PARI
T(n, k) = binomial(n+k-1, k)-sum(j=2, n, T(n\j, k)); \\ Seiichi Manyama, Jun 12 2021
Formula
From Seiichi Manyama, Jun 12 2021: (Start)
G.f. of column k: (1/(1 - x)) * Sum_{j>=1} mu(j) * x^j/(1 - x^j)^k.
T(n,k) = Sum_{j=1..n} Sum_{d|j} mu(j/d) * binomial(d+k-2,d-1).
T(n,k) = binomial(n+k-1,k) - Sum_{j=2..n} T(floor(n/j),k). (End)
Comments