A177984 A symmetrical triangle of polynomial coefficients:p(x,n)=If[n == 0, 1, (1 - x)^(n + 1)*Sum[((2*k + 1)^n + (k + 1)^n + k^n)*x^k, {k, 0, Infinity}]/2].
1, 1, 1, 1, 4, 1, 1, 14, 14, 1, 1, 44, 126, 44, 1, 1, 132, 887, 887, 132, 1, 1, 390, 5451, 12076, 5451, 390, 1, 1, 1150, 30984, 131665, 131665, 30984, 1150, 1, 1, 3400, 168076, 1252600, 2353126, 1252600, 168076, 3400, 1, 1, 10088, 885725, 10905407, 34828859
Offset: 0
Examples
{1}, {1, 1}, {1, 4, 1}, {1, 14, 14, 1}, {1, 44, 126, 44, 1}, {1, 132, 887, 887, 132, 1}, {1, 390, 5451, 12076, 5451, 390, 1}, {1, 1150, 30984, 131665, 131665, 30984, 1150, 1}, {1, 3400, 168076, 1252600, 2353126, 1252600, 168076, 3400, 1}, {1, 10088, 885725, 10905407, 34828859, 34828859, 10905407, 885725, 10088, 1}, {1, 30026, 4582497, 89401968, 454344414, 764856588, 454344414, 89401968, 4582497, 30026, 1}
Programs
-
Mathematica
p[x_, n_] = If[n == 0, 1, (1 - x)^(n + 1)*Sum[((2* k + 1)^n + (k + 1)^n + k^n)*x^k, {k, 0, Infinity}]/2]; Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; Flatten[%]
Comments