A177994 Triangle read by rows, A177990 * A070909.
1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 3, 1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1
Offset: 0
Examples
First few rows of the triangle = 1; 1, 1; 2, 1, 1; 2, 1, 1, 1; 3, 1, 2, 1, 1; 3, 1, 2, 1, 1, 1; 4, 1, 3, 1, 2, 1, 1; 4, 1, 3, 1, 2, 1, 1, 1; 5, 1, 4, 1, 3, 1, 2, 1, 1; 5, 1, 4, 1, 3, 1, 2, 1, 1, 1; 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1; 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1; 7, 1, 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1; 7, 1, 6, 1, 5, 1, 4, 1, 3, 1, 2, 1, 1, 1; ...
Links
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- Peter Bala, Matrices with repeated columns - the generalised Appell groups
- D. E. Davenport, L. W. Shapiro and L. C. Woodson, The Double Riordan Group, The Electronic Journal of Combinatorics, 18(2) (2012).
Programs
-
Haskell
a177994 n k = a177994_tabl !! n !! k a177994_row n = a177994_tabl !! n a177994_tabl = [1] : [1,1] : map f a177994_tabl where f xs@(x:_) = (x + 1) : 1 : xs -- Reinhard Zumkeller, Feb 20 2015
Comments