cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178034 a(n) = binomial(n*Omega(n),Omega(n)) / n.

Original entry on oeis.org

1, 1, 1, 7, 1, 11, 1, 253, 17, 19, 1, 595, 1, 27, 29, 39711, 1, 1378, 1, 1711, 41, 43, 1, 138415, 49, 51, 3160, 3403, 1, 3916, 1, 25637001, 65, 67, 69, 477191, 1, 75, 77, 657359, 1, 7750, 1, 8515, 8911, 91, 1, 132563501, 97, 11026, 101, 11935, 1, 1633355
Offset: 1

Views

Author

Michel Lagneau, May 17 2010

Keywords

Comments

Omega(.) = A001222(.) is the number of prime divisors of n (counted with multiplicity).
binomial(nk,k)= n*binomial(nk-1,k-1) ensures that all entries are integers.
Subcases for this sequence:
If n is prime, Omega(n) = 1, and a(n) = binomial (n,1) / n = 1.
If n and n+1 are products of two primes (A070552), then Omega(n) = Omega(n+1) = 2, and binomial(n*Omega(n), Omega(n)) / n = binomial(2*n, 2) / n = 2*n-1 and binomial(2*(n+1), 2) / (n+1) = 2*n+1, and we obtain two consecutive numbers of the form (x, x+2), for example (17,19), (27,29), (41,43),... at n =9, 14...
Chaining this property: If n, n+1, and n+2 are semiprimes (A056809) , we find three consecutive numbers of the form (x, x+2,x+4), for example (65, 67, 69), (169, 171, 173), at n=33, 85.
At places where Omega(n)=3, we find the subsequence A060544, for example a(8) = A060544(8).
At places where Omega(n)=4, we find the subsequence A015219.

Examples

			a(8) = binomial(8*Omega(8),Omega(8))/8 = binomial(8*3,3)/8 = 2024/8 = 253.
		

Crossrefs

Programs

  • Maple
    A178034 := proc(n)
            local o ;
            o := numtheory[bigomega](n) ;
            binomial(n*o,o)/n ;
    end proc: # R. J. Mathar, Jul 08 2012
  • Mathematica
    bon[n_]:=Module[{o=PrimeOmega[n]},Binomial[n*o,o]/n]; Array[bon,60] (* Harvey P. Dale, Jul 22 2014 *)
  • PARI
    a(n)=my(b=bigomega(n));binomial(n*b,b)/n \\ Charles R Greathouse IV, Oct 25 2012