A178058 Number of 1's in the Gray code for binomial(n,m).
1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 3, 4, 4, 3, 1, 1, 2, 1, 4, 1, 2, 1, 1, 1, 5, 3, 3, 5, 1, 1, 1, 2, 2, 2, 4, 2, 2, 2, 1, 1, 3, 4, 6, 2, 2, 6, 4, 3, 1, 1, 4, 5, 2, 6, 2, 6, 2, 5, 4, 1
Offset: 0
Examples
1; 1, 1; 1, 2, 1; 1, 1, 1, 1; 1, 2, 2, 2, 1; 1, 3, 4, 4, 3, 1; 1, 2, 1, 4, 1, 2, 1; 1, 1, 5, 3, 3, 5, 1, 1; 1, 2, 2, 2, 4, 2, 2, 2, 1; 1, 3, 4, 6, 2, 2, 6, 4, 3, 1; 1, 4, 5, 2, 6, 2, 6, 2, 5, 4, 1;
Links
- Eric W. Weisstein’s World of Mathematics, Gray code
Crossrefs
Cf. A143214.
Programs
-
Maple
A178058 := proc(n,m) A005811(binomial(n,m)) ; end proc: # R. J. Mathar, Mar 10 2015
-
Mathematica
GrayCodeList[k_] := Module[{b = IntegerDigits[k, 2], i}, Do[ If[b[[i - 1]] == 1, b[[i]] = 1 - b[[i]]], {i, Length[b], 2, -1} ]; b ] Table[Table[Apply[Plus, GrayCodeList[Binomial[n, m]]], {m, 0, n}], {n, 0, 10}]; Flatten[%]
Formula
T(n,m) = A005811(binomial(n,m)), 0<=m<=n.
Extensions
Edited by R. J. Mathar, Mar 10 2015
Comments