cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178084 Numbers k for which 10k + 1, 10k + 3, 10k + 7, 10k + 9 and 10k + 13 are primes.

Original entry on oeis.org

1, 10, 148, 1606, 1942, 2101, 2227, 4378, 5533, 14416, 16570, 16684, 19573, 20182, 22534, 24760, 26881, 32614, 34798, 36121, 39775, 46516, 51880, 53644, 63346, 63379, 66109, 76819, 79579, 82972, 85795, 87601, 95854, 100885, 102250, 106396
Offset: 1

Views

Author

Roger L. Bagula, May 19 2010

Keywords

Comments

These primes sets are just like 3k-4 and 3k-2 (or 6k-1 and 6*k+1) prime pairs, only five in a row.

Examples

			k =    1:    11,    13,    17,    19,    23,
k =   10:   101,   103,   107,   109,   113,
k =  148:  1481,  1483,  1487,  1489,  1493,
k = 1606: 16061, 16063, 16067, 16069, 16073,
k = 1942: 19421, 19423, 19427, 19429, 19433,
k = 2101: 21011, 21013, 21017, 21019, 21023,
k = 2227: 22271, 22273, 22277, 22279, 22283
		

Crossrefs

Cf. A007811.

Programs

  • Magma
    [n: n in [0..1000]| IsPrime(10*n+1) and IsPrime(10*n+3) and IsPrime(10*n+7) and IsPrime(10*n+9) and IsPrime(10*n+13)] // Vincenzo Librandi, Nov 30 2010
  • Mathematica
    Flatten[Table[If[PrimeQ[10* n + 1] && PrimeQ[10*n + 3] && PrimeQ[10*n + 7] && PrimeQ[10*n + 9] && PrimeQ[10*(n + 1) + 3], n, {}], {n, 0, 50000}]]

Extensions

More terms from Vincenzo Librandi, May 23 2010