A178100 Let B_m be set of divisors 1<=d<=m/2 of binomial(m-d-1,d-1) such that gcd(m,d)>1. The sequence lists m for which the intersection of B_m and B_(m+1) is not empty.
26, 45, 50, 51, 54, 56, 57, 62, 63, 64, 65, 69, 77, 80, 81, 85, 86, 87, 90, 92, 93, 94, 98, 99, 110, 114, 116, 117, 118, 119, 122, 123, 124, 125, 128, 129, 132, 133, 134, 135, 140, 141, 144, 146, 147, 152, 153, 154, 155, 158, 159, 160, 161, 164, 165, 170, 171, 174, 175, 176, 177, 182, 183, 184
Offset: 1
Keywords
Links
- Charlie Neder, Table of n, a(n) for n = 1..1000
- Vladimir Shevelev, On divisibility of binomial(n-i-1,i-1) by i, Int. J. of Number Theory, 3, no.1 (2007), 119-139.
Programs
-
Mathematica
B[n_] := Select[Range[1, Floor[n/2]], GCD[n, #]>1 && Divisible[Binomial[n-#-1, #-1], #] &]; aQ[n_]:=Length[Intersection[B[n], B[n+1]]]>0; Select[Range[184], aQ] (* Amiram Eldar, Dec 04 2018 *)
-
Sage
def is_A178100(n): B_m = lambda m: set(d for d in (1..m//2) if binomial(m-d-1,d-1) % d == 0 and gcd(m,d) > 1) return bool(B_m(n).intersection(B_m(n+1))) # D. S. McNeil, Sep 05 2011
Extensions
Corrected by R. J. Mathar, Sep 05 2011
Comments