cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178102 2^(absolute difference between prime factors of n-th semiprime) mod (n-th semiprime).

Original entry on oeis.org

1, 2, 1, 8, 4, 4, 16, 6, 1, 20, 25, 26, 4, 10, 10, 12, 1, 13, 9, 43, 44, 16, 61, 52, 56, 16, 62, 16, 22, 22, 64, 70, 24, 44, 80, 28, 59, 30, 72, 1, 92, 31, 97, 106, 34, 106, 36, 4, 136, 110, 64, 40, 40, 9, 42, 1, 133, 134, 46, 81, 64, 146, 151, 152, 121
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 16 2010

Keywords

Comments

From Robert Israel, Apr 05 2020: (Start)
If A001358(n) = 2*p, then a(n) = (p+1)/2 if p == 3 (mod 4), or (3*p+1)/2 if p == 1 (mod 4).
If A001358(n) = 3*p with p > 3, then a(n) = (3*p+1)/4 if p == 1 (mod 4), or (9*p+1)/4 if p == 3 (mod 4). (End)

Examples

			a(1)=1 because the first semiprime is 4=2*2 and 2^(2-2) mod 4 = 1.
a(11)=25 because the 11th semiprime is 33=3*11 and 2^(11-3) mod 33 = 25.
		

Crossrefs

Programs

  • Maple
    b:= proc(n) option remember;
      local k;
      if n=1 then 4
             else for k from b(n-1)+1 while
                      isprime(k) or add (i[2], i=ifactors(k)[2])<>2
                  do od; k
      fi
    end:
    a:= proc(n)
      local l;
      l:= ifactors (b(n))[2];
      if nops (l)=1 then 1
      else 2 &^ abs(l[1][1]-l[2][1]) mod b(n)
      fi
    end:
    seq (a(n), n=1..65);
  • Mathematica
    Mod[2^Differences[FactorInteger[#][[All,1]]],#]&/@Select[Range[300], PrimeOmega[ #] == 2&]/.{}->1//Flatten (* Harvey P. Dale, Dec 25 2018 *)

Extensions

Edited by Alois P. Heinz, Dec 17 2010