A178102 2^(absolute difference between prime factors of n-th semiprime) mod (n-th semiprime).
1, 2, 1, 8, 4, 4, 16, 6, 1, 20, 25, 26, 4, 10, 10, 12, 1, 13, 9, 43, 44, 16, 61, 52, 56, 16, 62, 16, 22, 22, 64, 70, 24, 44, 80, 28, 59, 30, 72, 1, 92, 31, 97, 106, 34, 106, 36, 4, 136, 110, 64, 40, 40, 9, 42, 1, 133, 134, 46, 81, 64, 146, 151, 152, 121
Offset: 1
Examples
a(1)=1 because the first semiprime is 4=2*2 and 2^(2-2) mod 4 = 1. a(11)=25 because the 11th semiprime is 33=3*11 and 2^(11-3) mod 33 = 25.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
b:= proc(n) option remember; local k; if n=1 then 4 else for k from b(n-1)+1 while isprime(k) or add (i[2], i=ifactors(k)[2])<>2 do od; k fi end: a:= proc(n) local l; l:= ifactors (b(n))[2]; if nops (l)=1 then 1 else 2 &^ abs(l[1][1]-l[2][1]) mod b(n) fi end: seq (a(n), n=1..65);
-
Mathematica
Mod[2^Differences[FactorInteger[#][[All,1]]],#]&/@Select[Range[300], PrimeOmega[ #] == 2&]/.{}->1//Flatten (* Harvey P. Dale, Dec 25 2018 *)
Extensions
Edited by Alois P. Heinz, Dec 17 2010
Comments