A178122 Triangle T(n,m) = A060187(n+1,m+1) + 2*binomial(n,m) - 2, read by rows.
1, 1, 1, 1, 8, 1, 1, 27, 27, 1, 1, 82, 240, 82, 1, 1, 245, 1700, 1700, 245, 1, 1, 732, 10571, 23586, 10571, 732, 1, 1, 2191, 60697, 259791, 259791, 60697, 2191, 1, 1, 6566, 331666, 2485398, 4675152, 2485398, 331666, 6566, 1, 1, 19689, 1756410, 21708138, 69413544, 69413544, 21708138, 1756410, 19689, 1
Offset: 0
Examples
Rows n>=0 and columns 0<=m<=n start as: 1; 1, 1; 1, 8, 1; 1, 27, 27, 1; 1, 82, 240, 82, 1; 1, 245, 1700, 1700, 245, 1; 1, 732, 10571, 23586, 10571, 732, 1; 1, 2191, 60697, 259791, 259791, 60697, 2191, 1; 1, 6566, 331666, 2485398, 4675152, 2485398, 331666, 6566, 1; 1, 19689, 1756410, 21708138, 69413544, 69413544, 21708138, 1756410, 19689, 1;
Links
- G. C. Greubel, Rows n = 0..50 of the triangle, flattened
Programs
-
Magma
A060187:= func< n,k | (&+[(-1)^(k-j)*Binomial(n, k-j)*(2*j-1)^(n-1): j in [1..k]]) >; A178122:= func< n,k | A060187(n+1, k+1) + 2*Binomial(n, k) - 2 >; [A178122(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 18 2022
-
Mathematica
p[x_, n_] = (1 - x)^(n + 1)*Sum[(2*k + 1)^n*x^k, {k, 0, Infinity}]; f[n_, m_] := CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x][[m + 1]]; t[n_, m_] := f[n, m] + 2*Binomial[n, m] - 2 ; Table[Table[t[n, m], {m, 0, n}], {n, 0, 10}]; Flatten[%]
-
Sage
def A060187(n,k): return sum( (-1)^(k-j)*binomial(n, k-j)*(2*j-1)^(n-1) for j in (1..k) ) def A178122(n,k): return A060187(n+1, k+1) + 2*binomial(n, k) - 2 flatten([[A178122(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 18 2022
Formula
Extensions
Indices in definition corrected, row sum formula added by the Assoc. Eds. of the OEIS - Aug 20 2010