A178127 Lesser of twin Ramanujan primes.
149, 179, 227, 239, 347, 431, 569, 599, 641, 821, 1019, 1049, 1061, 1427, 1487, 1607, 1787, 1997, 2081, 2129, 2237, 2267, 2657, 2687, 2711, 2789, 2999, 3167, 3257, 3299, 3359, 3527, 3539, 3581, 3671, 3917, 4091, 4127, 4229, 4241, 4337, 4547, 4637, 4649
Offset: 1
Keywords
Examples
a(1) = 149 because (149,151) is the 1st pair of twin primes both of which are Ramanujan primes. 11 is not a member even though 11 and 13 are twin primes and 11 is a Ramanujan prime, because 13 is not also a Ramanujan prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..674 from R. J. Mathar)
- B. Ghusayni, Subsets of prime numbers, Int. J. Math. Comp. Sci. 7 (2) 2012
- Jonathan Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010.
- Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009), 630-635.
- Jonathan Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
Crossrefs
Programs
-
Maple
n := 1: for i from 1 do if A104272(i+1) = A104272(i)+2 then printf("%d %d\n",n,A104272(i)) ; n := n+1 ; end if; end do: # produces b-file, R. J. Mathar, Sep 21 2017
-
Mathematica
nn = 1000; R = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s + 1]] = k], {k, Prime[3*nn]}]; A104272 = R + 1; twins1 = Position[A104272 // Differences, 2] // Flatten; A104272[[twins1]] (* Jean-François Alcover, Oct 28 2018, after T. D. Noe in A104272 *)
-
Perl
use ntheory ":all"; my $r = ramanujan_primes(1e5); my @rt = @$r[grep { $r->[$+1]-$r->[$]==2 } 0..$#$r-1]; say "@rt"; # Dana Jacobsen, Sep 06 2015
Comments