cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178156 Numbers m such that (m-1)! is not divisible by m^2.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 17, 19, 22, 23, 26, 29, 31, 34, 37, 38, 41, 43, 46, 47, 53, 58, 59, 61, 62, 67, 71, 73, 74, 79, 82, 83, 86, 89, 94, 97, 101, 103, 106, 107, 109, 113, 118, 122, 127, 131, 134, 137, 139, 142, 146, 149, 151, 157, 158, 163
Offset: 1

Views

Author

Reinhard Zumkeller, Dec 17 2010

Keywords

Comments

Union of {8, 9} and A001751.

References

  • G. Pólya and G. Szegő, Problems and Theorems in Analysis II (Springer 1924, reprinted 1972), Part Eight, Chap. 3, Sect. 1, Problem 133b.

Crossrefs

Programs

  • Haskell
    import Data.List (insert)
    a178156 n = a178156_list !! (n-1)
    a178156_list = insert 9 $ insert 8 a001751_list
    -- Reinhard Zumkeller, Oct 14 2014
    
  • Mathematica
    Select[Range[200],!Divisible[(#-1)!,#^2]&] (* Harvey P. Dale, Mar 06 2016 *)
  • PARI
    for(m=1,3e2,if((m-1)!%m^2,print1(m", "))) \\ Charles R Greathouse IV, Aug 21 2011
    
  • Python
    from sympy import primepi
    def A178156(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x-primepi(x)-primepi(x>>1)-(x>=8)-(x>=9))
        return bisection(f,n,n) # Chai Wah Wu, Oct 17 2024

Extensions

Entries corrected by Charles R Greathouse IV, Aug 21 2011