A178165 Number of unordered collections of distinct nonempty subsets of an n-element set where each element appears in at most 2 subsets.
1, 2, 8, 59, 652, 9736, 186478, 4421018, 126317785, 4260664251, 166884941780, 7489637988545, 380861594219460, 21739310882945458, 1381634777325000263, 97089956842985393297, 7497783115765911443879, 632884743974716421132084
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..300
Programs
-
Mathematica
terms = m = 30; a094577[n_] := Sum[Binomial[n, k]*BellB[2n-k], {k, 0, n}]; egf = Exp[(1 - Exp[x])/2]*Sum[a094577[n]*(x/2)^n/n!, {n, 0, m}] + O[x]^m; A094574 = CoefficientList[egf + O[x]^m, x]*Range[0, m-1]!; a[n_] := Sum[Binomial[n, k]*A094574[[k+1]], {k, 0, n}]; Table[a[n], {n, 0, m-1}] (* Jean-François Alcover, May 24 2019 *)
-
Python
from numpy import array def toBinary(n, k): ans=[] for i in range(k): ans.insert(0, n%2) n=n>>1 return array(ans) def powerSet(k): return [toBinary(n,k) for n in range(1,2**k)] def courcelle(maxUses, remainingSets, exact=False): if exact and not all(maxUses<=sum(remainingSets)): ans=0 elif len(remainingSets)==0: ans=1 else: set0=remainingSets[0] if all(set0<=maxUses): ans=courcelle(maxUses-set0,remainingSets[1:],exact=exact) else: ans=0 ans+=courcelle(maxUses,remainingSets[1:],exact=exact) return ans for i in range(10): print(i, courcelle(array([2]*i),powerSet(i),exact=False))
Extensions
Edited and corrected by Max Alekseyev, Dec 19 2010
Comments