A178173 Number of collections of nonempty subsets of an n-element set where each element appears in at most 4 subsets.
1, 2, 8, 128, 11087, 2232875, 775098224, 428188962261, 355916994389700, 425272149099677521, 703909738878615927739, 1565842283246869237505246, 4565002967677134523844716754, 17076464900445281560851997140670, 80494979734877344662882495100752511
Offset: 0
Keywords
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
Crossrefs
Programs
-
PARI
\\ See A330964 for efficient code to compute this sequence. - Andrew Howroyd, Jan 04 2020
-
Python
from numpy import array def toBinary(n,k): ans=[] for i in range(k): ans.insert(0,n%2) n=n>>1 return array(ans) def powerSet(k): return [toBinary(n,k) for n in range(1,2**k)] def courcelle(maxUses,remainingSets,exact=False): if exact and not all(maxUses<=sum(remainingSets)): ans=0 elif len(remainingSets)==0: ans=1 else: set0=remainingSets[0] if all(set0<=maxUses): ans=courcelle(maxUses-set0,remainingSets[1:],exact=exact) else: ans=0 ans+=courcelle(maxUses,remainingSets[1:],exact=exact) return ans for i in range(10): print(i, courcelle(array([4]*i),powerSet(i),exact=False))
Extensions
a(6)-a(8) from Bert Dobbelaere, Sep 10 2019
Terms a(9) and beyond from Andrew Howroyd, Jan 04 2020