A178212 Nonsquarefree numbers divisible by exactly three distinct primes.
60, 84, 90, 120, 126, 132, 140, 150, 156, 168, 180, 198, 204, 220, 228, 234, 240, 252, 260, 264, 270, 276, 280, 294, 300, 306, 308, 312, 315, 336, 340, 342, 348, 350, 360, 364, 372, 378, 380, 396, 408, 414, 440, 444, 450, 456, 460, 468, 476, 480, 490, 492
Offset: 1
Keywords
Examples
60 is in the sequence because it is not squarefree and it is divisible by three distinct primes: 2, 3, 5. 72 is not in the sequence, because although it is not squarefree, it is divisible by only two distinct primes: 2 and 3.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a178212 n = a178212_list !! (n-1) a178212_list = filter f [1..] where f x = length (a027748_row x) == 3 && any (> 1) (a124010_row x) -- Reinhard Zumkeller, Apr 03 2015
-
Mathematica
nsD3Q[n_] := Block[{fi = FactorInteger@ n}, Length@ fi == 3 && Plus @@ Last /@ fi > 3]; Select[ Range@ 494, nsD3Q] (* Robert G. Wilson v, Feb 09 2012 *) Select[Range[500], PrimeNu[#] == 3 && PrimeOmega[#] > 3 &] (* Alonso del Arte, Mar 23 2015, based on a comment from Robert G. Wilson v, Feb 09 2012; requires Mathematica 7.0+ *)
-
PARI
is_A178212(n)={ omega(n)==3 & bigomega(n)>3 } for(n=1,999,is_A178212(n) & print1(n",")) \\ M. F. Hasler, Feb 09 2012