A178232 A triangle sequence derived from setting an Euler numbers A122045 generalization equal to the Eulerian numbers A008292 to get a generating function expansion: p(x,t) = ((-1 + exp(x)) (-1 + x)/(-1 + exp(t*x) + t - exp(t)* x)).
0, 0, 1, 6, 1, 1, 36, 8, 3, 7, 1, 240, 60, -20, 81, 11, 21, 1, 1800, 480, -510, 822, 143, 173, 123, 51, 1, 15120, 4200, -7560, 8526, 2450, 239, 2381, 435, 715, 113, 1, 141120, 40320, -102480, 93744, 43512, -21320, 36991, 2943, 11035, 4035, 3139, 239, 1
Offset: 0
Examples
{0}, {0}, {1}, {6, 1, 1}, {36, 8, 3, 7, 1}, {240, 60, -20, 81, 11, 21, 1}, {1800, 480, -510, 822, 143, 173, 123, 51, 1}, {15120, 4200, -7560, 8526, 2450, 239, 2381, 435, 715, 113, 1}, {141120, 40320, -102480, 93744, 43512, -21320, 36991, 2943, 11035, 4035, 3139, 239, 1}, {1451520, 423360, -1391040, 1103760, 763056, -585432, 527544, 71353, 82513, 107377, 39589, 36349, 11947, 493, 1}, {16329600, 4838400, -19504800, 13940640, 13361040, -12088080, 7137270, 2643650, -749001, 2527719, 165459, 900099, 256743, 251073, 41883, 1003, 1}
References
- Steve Roman, The Umbral Calculus, Dover Publications, New York (1984), pp. 78-79.
- L. Comtet, Advanced Combinatorics, Reidel, Holland, 1978, page 245.
Links
- L. Carlitz, q-Bernoulli numbers and polynomials, Duke Math. J. Volume 15, Number 4 (1948), 987-1000.
Programs
-
Mathematica
p[t_] = ((-1 + Exp[x]) (-1 + x)/(-1 + Exp[t*x] + t - Exp[t]* x)); a = Table[ CoefficientList[FullSimplify[ExpandAll[(FullSimplify[ExpandAll[ -(1/((-1 + Exp[x])*(-1 + x)))*x^(n + 1)*n!*SeriesCoefficient[ Series[p[t], {t, 0, 30}], n]]] - n!)/(x^2*(-1 + x))]], x], {n, 0, 10}] Flatten[a]
Formula
p(x,t) = ((-1 + exp(x)) (-1 + x)/(-1 + exp(t*x) + t - exp(t)* x)).
Comments