A109313 Difference between prime factors of n-th semiprime.
0, 1, 0, 3, 5, 2, 4, 9, 0, 11, 8, 15, 2, 17, 10, 21, 0, 14, 6, 16, 27, 29, 8, 20, 35, 4, 39, 12, 41, 26, 6, 28, 45, 14, 51, 34, 18, 57, 10, 0, 59, 38, 40, 12, 65, 44, 69, 2, 24, 71, 26, 77, 50, 16, 81, 0, 56, 87, 58, 32, 6, 95, 64, 99, 22, 36, 101, 8, 68, 105, 38, 24, 107, 70, 4
Offset: 1
Keywords
Examples
a(1)=0 because sp(1)=4=2*2 and 2-2=0; a(2)=1 because sp(2)=6=2*3 and 3-2=1; sp(n)=n-th semiprime.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000 (first 1000 terms from Zak Seidov)
Programs
-
Maple
with(numtheory): a:=proc(n) if bigomega(n)=2 and nops(factorset(n))=2 then factorset(n)[2]-factorset(n)[1] elif bigomega(n)=2 then 0 else fi end: seq(a(n),n=1..225); # Emeric Deutsch # second Maple program: b:= proc(n) option remember; local k; if n=1 then 4 else for k from 1+b(n-1) do if not isprime(k) and numtheory[bigomega](k)=2 then return k fi od fi end: a:= n-> (s-> max(s)-min(s))(numtheory[factorset](b(n))): seq(a(n), n=1..100); # Alois P. Heinz, Feb 05 2017
-
Mathematica
spQ[n_] := PrimeOmega[n] == 2; fi[n_] := FactorInteger[n]; f[n_] := fi[n][[-1, 1]] - fi[n][[1, 1]]; f[#] & /@ Select[Range@215, spQ] (* Zak Seidov, Oct 16 2014 *)
-
Python
from math import isqrt from sympy.ntheory.primetest import is_square from sympy import primepi, primerange, primefactors def A109313(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) return 0 if is_square(m:=bisection(f,n,n)) else (p:=primefactors(m))[1]-p[0] # Chai Wah Wu, Apr 03 2025
Extensions
Edited by Zak Seidov, Oct 16 2014
Comments