A178316 Primes whose digital rotation is still prime.
2, 5, 11, 19, 61, 101, 109, 151, 181, 199, 601, 619, 659, 661, 1019, 1021, 1061, 1091, 1109, 1129, 1151, 1181, 1201, 1229, 1259, 1291, 1511, 1559, 1601, 1609, 1621, 1669, 1699, 1811, 1901, 1999, 6011, 6091, 6101, 6199, 6211, 6221, 6229, 6521, 6551, 6569
Offset: 1
Examples
For example 1259 becomes 6521 under such a rotation.
References
- Guy, R. K., Unsolved Problems in Number Theory, p 15 This sequence is related to the palindromic primes with symmetries as in Guy's book.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Range[6570],PrimeQ[#]&&PrimeQ[FromDigits[Reverse[IntegerDigits[#]/.{6->9,9->6}]]]&&ContainsOnly[IntegerDigits[#],{0,1,2,5,6,8,9}]&] (* James C. McMahon, Apr 09 2024 *)
-
Python
from itertools import count, islice, product from sympy import isprime def A178316_gen(): yield from (2,5) r = ''.maketrans('69','96') for l in count(1): for a in '125689': for d in product('0125689',repeat=l): s = a+''.join(d) m = int(s) if isprime(m) and isprime(int(s[::-1].translate(r))): yield m A178316_list = list(islice(A178316_gen(),40)) # Chai Wah Wu, Apr 09 2024
Comments