cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178395 Triangle T(n,m) read by rows: the numerator of the coefficient [x^m] of the inverse Euler polynomial E^{-1}(n,x), 0 <= m <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 15, 10, 15, 3, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 4, 14, 28, 35, 28, 14, 4, 1, 1, 9, 18, 42, 63, 63, 42, 18, 9, 1, 1, 5, 45, 60, 105, 126, 105, 60, 45, 5, 1, 1, 11, 55, 165, 165, 231, 231, 165, 165, 55, 11, 1, 1, 6, 33, 110, 495, 396, 462, 396, 495, 110, 33, 6, 1
Offset: 0

Views

Author

Paul Curtz, May 27 2010

Keywords

Comments

The triangle of fractions A060096(n,m)/A060097(n,m) contains the coefficients of the Euler Polynomial E(n,x) in row n. The matrix inverse of this triangle is
1;
1/2, 1;
1/2, 1, 1;
1/2, 3/2, 3/2, 1;
1/2, 2, 3, 2, 1;
1/2, 5/2, 5, 5, 5/2, 1;
and defines inverse Euler polynomials E^{-1}(n,x) assuming that row n and column m contain the coefficient [x^m] E^{-1}(n,x). The column m=0 is 1 if n=0, otherwise 1/2.
The current triangle T(n,m) shows the numerator of [x^m] E^{-1}(n,x).
Numerators of exponential Riordan array [(1+exp(x))/2,x]. Central coefficients T(2n,n) are A088218. - Paul Barry, Sep 07 2010

Examples

			From _Paul Barry_, Sep 07 2010: (Start)
Triangle begins
  1;
  1,   1;
  1,   1,   1;
  1,   3,   3,   1;
  1,   2,   3,   2,   1;
  1,   5,   5,   5,   5,   1;
  1,   3,  15,  10,  15,   3,   1;
  1,   7,  21,  35,  35,  21,   7,   1;
  1,   4,  14,  28,  35,  28,  14,   4,   1;
  1,   9,  18,  42,  63,  63,  42,  18,   9,   1;
  1,   5,  45,  60, 105, 126, 105,  60,  45,   5,   1; (End)
		

Crossrefs

Cf. A178474 (denominators).

Programs

  • Maple
    nm := 15 : eM := Matrix(nm,nm) :
    for n from 0 to nm-1 do for m from 0 to n do eM[n+1,m+1] := coeff(euler(n,x),x,m) ; end do: for m from n+1 to nm-1 do eM[n+1,m+1] := 0 ; end do: end do:
    eM := LinearAlgebra[MatrixInverse](eM) :
    for n from 1 to nm do for m from 1 to n do printf("%d,", numer(eM[n,m])) ; end do: end do: # R. J. Mathar, Dec 21 2010
  • Mathematica
    (* The function RiordanArray is defined in A256893. *)
    rows = 13;
    R = RiordanArray[(1 + E^#)/2&, #&, rows, True];
    R // Flatten // Numerator (* Jean-François Alcover, Jul 20 2019 *)
  • PARI
    T(n,k)=numerator((binomial(n,k)+binomial(0,n-k))/2);
    for(n=0,10,for(k=0,n,print1(T(n,k),", "));print());

Formula

T(n,0) = 1.
T(n,m) = T(n,n-m).
T(n,1) = A026741(n).
T(n,2) = A064038(n) (numerators related to A061041).
Number triangle T(n,k) = [k<=n]*numerator((C(n,k) + C(0,n-k))/2). - Paul Barry, Sep 07 2010