A178395 Triangle T(n,m) read by rows: the numerator of the coefficient [x^m] of the inverse Euler polynomial E^{-1}(n,x), 0 <= m <= n.
1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 2, 3, 2, 1, 1, 5, 5, 5, 5, 1, 1, 3, 15, 10, 15, 3, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 4, 14, 28, 35, 28, 14, 4, 1, 1, 9, 18, 42, 63, 63, 42, 18, 9, 1, 1, 5, 45, 60, 105, 126, 105, 60, 45, 5, 1, 1, 11, 55, 165, 165, 231, 231, 165, 165, 55, 11, 1, 1, 6, 33, 110, 495, 396, 462, 396, 495, 110, 33, 6, 1
Offset: 0
Examples
From _Paul Barry_, Sep 07 2010: (Start) Triangle begins 1; 1, 1; 1, 1, 1; 1, 3, 3, 1; 1, 2, 3, 2, 1; 1, 5, 5, 5, 5, 1; 1, 3, 15, 10, 15, 3, 1; 1, 7, 21, 35, 35, 21, 7, 1; 1, 4, 14, 28, 35, 28, 14, 4, 1; 1, 9, 18, 42, 63, 63, 42, 18, 9, 1; 1, 5, 45, 60, 105, 126, 105, 60, 45, 5, 1; (End)
Links
- T.-X. He, L. C. Hsu, P. J.-S. Shiue, The Sheffer group and the Riordan group, Discr. Appl. Math. 155 (2007) 1895-1909.
Programs
-
Maple
nm := 15 : eM := Matrix(nm,nm) : for n from 0 to nm-1 do for m from 0 to n do eM[n+1,m+1] := coeff(euler(n,x),x,m) ; end do: for m from n+1 to nm-1 do eM[n+1,m+1] := 0 ; end do: end do: eM := LinearAlgebra[MatrixInverse](eM) : for n from 1 to nm do for m from 1 to n do printf("%d,", numer(eM[n,m])) ; end do: end do: # R. J. Mathar, Dec 21 2010
-
Mathematica
(* The function RiordanArray is defined in A256893. *) rows = 13; R = RiordanArray[(1 + E^#)/2&, #&, rows, True]; R // Flatten // Numerator (* Jean-François Alcover, Jul 20 2019 *)
-
PARI
T(n,k)=numerator((binomial(n,k)+binomial(0,n-k))/2); for(n=0,10,for(k=0,n,print1(T(n,k),", "));print());
Formula
T(n,0) = 1.
T(n,m) = T(n,n-m).
T(n,1) = A026741(n).
Number triangle T(n,k) = [k<=n]*numerator((C(n,k) + C(0,n-k))/2). - Paul Barry, Sep 07 2010
Comments