cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A178421 Lower primes p1 in a twin pair such that sum of p1 and p2 yields average a1 of twin prime pairs and product of 2*a1 is another average of twin prime pairs.

Original entry on oeis.org

211049, 248639, 253679, 410339, 507359, 605639, 1121189, 1138829, 1262099, 2162579, 2172869, 2277659, 4070219, 6305459, 7671509, 11659409, 12577109, 14203769, 14862119, 17472839, 18728639, 18798359, 20520569, 21140699
Offset: 1

Views

Author

Keywords

Comments

The definition means that a1/2, a1 and 2*a1 are all in A014574 (twin prime averages). - R. J. Mathar, Nov 02 2023

Examples

			211049 is a term since 211049 and 211051 are twin primes; 211049 + 211051 = 422100 is an average of twin primes, and 2*422100 = 844200 is another average of twin primes.
		

Crossrefs

Programs

  • Mathematica
    lst={};Do[p1=Prime[n];p2=Prime[n+1];a1=p1+p2;a2=2*a1;If[p2-p1==2&&PrimeQ[a1-1]&&PrimeQ[a1+1]&&PrimeQ[a2-1]&&PrimeQ[a2+1],AppendTo[lst,p1]],{n,10!}];lst
    atpQ[{a_,b_}]:=Module[{m=a+b},b-a==2&&AllTrue[m+{1,-1},PrimeQ] && AllTrue[ 2m+{1,-1},PrimeQ]]; Select[Partition[Prime[Range[134*10^4]],2,1],atpQ][[All,1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Aug 28 2019 *)

Formula

a(n) = A069175(n)-1. - R. J. Mathar, Nov 02 2023